在发育中的神经视网膜中增强和沉默的主动学习。

Cell systems Pub Date : 2025-01-15 Epub Date: 2025-01-07 DOI:10.1016/j.cels.2024.12.004
Ryan Z Friedman, Avinash Ramu, Sara Lichtarge, Yawei Wu, Lloyd Tripp, Daniel Lyon, Connie A Myers, David M Granas, Maria Gause, Joseph C Corbo, Barak A Cohen, Michael A White
{"title":"在发育中的神经视网膜中增强和沉默的主动学习。","authors":"Ryan Z Friedman, Avinash Ramu, Sara Lichtarge, Yawei Wu, Lloyd Tripp, Daniel Lyon, Connie A Myers, David M Granas, Maria Gause, Joseph C Corbo, Barak A Cohen, Michael A White","doi":"10.1016/j.cels.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of informative training data. This allowed us to iteratively train models on data from multiple rounds of massively parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical sequence but opposite functions establishes active learning as an effective strategy to train models of regulatory DNA. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101163"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active learning of enhancers and silencers in the developing neural retina.\",\"authors\":\"Ryan Z Friedman, Avinash Ramu, Sara Lichtarge, Yawei Wu, Lloyd Tripp, Daniel Lyon, Connie A Myers, David M Granas, Maria Gause, Joseph C Corbo, Barak A Cohen, Michael A White\",\"doi\":\"10.1016/j.cels.2024.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of informative training data. This allowed us to iteratively train models on data from multiple rounds of massively parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical sequence but opposite functions establishes active learning as an effective strategy to train models of regulatory DNA. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.12.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.12.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习是一种很有前途的顺调控元素建模策略。然而,在基因组序列上训练的模型往往不能解释为什么相同的转录因子可以在不同的背景下激活或抑制转录。为了解决这一限制,我们开发了一种主动学习方法来训练模型,以区分由光受体转录因子锥杆同源盒(CRX)结合位点组成的增强子和沉默子。在几乎对基因组中所有结合的CRX位点进行模型训练后,我们将合成生物学与不确定性采样相结合,以生成额外的信息性训练数据。这使我们能够在多轮大规模并行报告分析的数据上迭代地训练模型。所产生的模型能够区分具有相同序列但相反功能的CRX位点,这使得主动学习成为训练调节DNA模型的有效策略。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active learning of enhancers and silencers in the developing neural retina.

Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of informative training data. This allowed us to iteratively train models on data from multiple rounds of massively parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical sequence but opposite functions establishes active learning as an effective strategy to train models of regulatory DNA. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Stochastic modeling of single-cell gene expression adaptation reveals non-genomic contribution to evolution of tumor subclones. Active learning of enhancers and silencers in the developing neural retina. Contrastive learning of T cell receptor representations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1