Suwen Liu , Yunwen Yang , Qian Li , Lichun Yu , Zihan Zong , Ruixian Zang , Wentao Ji , Shuzhen Sun
{"title":"泛素特异性肽酶10通过去泛素化和稳定P53蛋白促进肾间质纤维化进展。","authors":"Suwen Liu , Yunwen Yang , Qian Li , Lichun Yu , Zihan Zong , Ruixian Zang , Wentao Ji , Shuzhen Sun","doi":"10.1016/j.bbadis.2025.167660","DOIUrl":null,"url":null,"abstract":"<div><div>Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice. In vitro, knocking down USP10 or inhibiting its deubiquitinating activity through Spautin-1 significantly reduced fibronectin expression and ameliorated TGFβ1-induced renal tubular epithelial cell dedifferentiation. Additionally, our results revealed that USP10 directly binds to P53 and removes the K48-linked polyubiquitin chains from P53, thereby affecting its ubiquitination, stability, and nuclear translocation, which subsequently leads to the upregulation of P21 and promotes fibrotic gene expression in injured renal tubular epithelial cells, ultimately exacerbating renal interstitial fibrosis. In conclusion, USP10 is inhibited through the P53 signaling pathway to alleviate the progression of renal interstitial fibrosis and serve as a potential target for treating CKD.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 3","pages":"Article 167660"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin-specific peptidase 10 promotes renal interstitial fibrosis progression through deubiquitinating and stabilizing P53 protein\",\"authors\":\"Suwen Liu , Yunwen Yang , Qian Li , Lichun Yu , Zihan Zong , Ruixian Zang , Wentao Ji , Shuzhen Sun\",\"doi\":\"10.1016/j.bbadis.2025.167660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice. In vitro, knocking down USP10 or inhibiting its deubiquitinating activity through Spautin-1 significantly reduced fibronectin expression and ameliorated TGFβ1-induced renal tubular epithelial cell dedifferentiation. Additionally, our results revealed that USP10 directly binds to P53 and removes the K48-linked polyubiquitin chains from P53, thereby affecting its ubiquitination, stability, and nuclear translocation, which subsequently leads to the upregulation of P21 and promotes fibrotic gene expression in injured renal tubular epithelial cells, ultimately exacerbating renal interstitial fibrosis. In conclusion, USP10 is inhibited through the P53 signaling pathway to alleviate the progression of renal interstitial fibrosis and serve as a potential target for treating CKD.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 3\",\"pages\":\"Article 167660\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443925000055\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000055","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ubiquitin-specific peptidase 10 promotes renal interstitial fibrosis progression through deubiquitinating and stabilizing P53 protein
Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice. In vitro, knocking down USP10 or inhibiting its deubiquitinating activity through Spautin-1 significantly reduced fibronectin expression and ameliorated TGFβ1-induced renal tubular epithelial cell dedifferentiation. Additionally, our results revealed that USP10 directly binds to P53 and removes the K48-linked polyubiquitin chains from P53, thereby affecting its ubiquitination, stability, and nuclear translocation, which subsequently leads to the upregulation of P21 and promotes fibrotic gene expression in injured renal tubular epithelial cells, ultimately exacerbating renal interstitial fibrosis. In conclusion, USP10 is inhibited through the P53 signaling pathway to alleviate the progression of renal interstitial fibrosis and serve as a potential target for treating CKD.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.