Ingvill Tolas, Zhigang Zhou, Zhen Zhang, Tsegay Teame, Rolf Erik Olsen, Einar Ringø, Ivar Rønnestad
{"title":"鱼的肠道感觉——硬骨鱼肠道微生物群的最新知识","authors":"Ingvill Tolas, Zhigang Zhou, Zhen Zhang, Tsegay Teame, Rolf Erik Olsen, Einar Ringø, Ivar Rønnestad","doi":"10.3389/fmars.2024.1495373","DOIUrl":null,"url":null,"abstract":"The importance of the gastrointestinal microbiota (GM) in health and disease is widely recognized. Although less is known in fish than in mammals, advances in molecular techniques, such as 16S rRNA sequencing, have facilitated characterization of fish GM, comprising resident autochthonous and transient allochthonous bacteria. The microbial diversity and composition are strongly influenced by diet. High-protein diets, including alternative ingredients like plant and insect proteins, modify GM, impacting beneficial bacteria e.g. <jats:italic>Cetobacterium</jats:italic>. Lipids affect microbial metabolism and short-chain fatty acid (SCFA) production, while excessive carbohydrates can disrupt GM balance, causing enteritis. Dietary additives, including probiotics, prebiotics, and antibiotics, effectively modulate GM. Probiotics enhance immunity and growth, prebiotics support beneficial bacteria, and antibiotics, though effective against pathogens, disrupt microbial diversity and may promote antibiotic resistance. Environmental factors, such as temperature, salinity, and pollution, significantly influence GM. Elevated temperatures and salinity shifts alter microbial composition, and pollutants introduce toxins that compromise intestinal function and microbial diversity. Stress and pathogen infections further destabilize GM, often favoring pathogenic bacteria. GM communicates with the host via metabolites such as SCFAs, bile acids, and neurotransmitters, regulating appetite, energy metabolism, immunity, and neural functions. Additionally, GM influences the immune system by interacting with epithelial cells and stimulating immune responses. Despite recent advances, further research is needed to elucidate species-specific mechanisms underlying GM-host interactions, the ecological implications of GM diversity, and its applications in aquaculture to optimize fish health and performance.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fishy gut feeling – current knowledge on gut microbiota in teleosts\",\"authors\":\"Ingvill Tolas, Zhigang Zhou, Zhen Zhang, Tsegay Teame, Rolf Erik Olsen, Einar Ringø, Ivar Rønnestad\",\"doi\":\"10.3389/fmars.2024.1495373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of the gastrointestinal microbiota (GM) in health and disease is widely recognized. Although less is known in fish than in mammals, advances in molecular techniques, such as 16S rRNA sequencing, have facilitated characterization of fish GM, comprising resident autochthonous and transient allochthonous bacteria. The microbial diversity and composition are strongly influenced by diet. High-protein diets, including alternative ingredients like plant and insect proteins, modify GM, impacting beneficial bacteria e.g. <jats:italic>Cetobacterium</jats:italic>. Lipids affect microbial metabolism and short-chain fatty acid (SCFA) production, while excessive carbohydrates can disrupt GM balance, causing enteritis. Dietary additives, including probiotics, prebiotics, and antibiotics, effectively modulate GM. Probiotics enhance immunity and growth, prebiotics support beneficial bacteria, and antibiotics, though effective against pathogens, disrupt microbial diversity and may promote antibiotic resistance. Environmental factors, such as temperature, salinity, and pollution, significantly influence GM. Elevated temperatures and salinity shifts alter microbial composition, and pollutants introduce toxins that compromise intestinal function and microbial diversity. Stress and pathogen infections further destabilize GM, often favoring pathogenic bacteria. GM communicates with the host via metabolites such as SCFAs, bile acids, and neurotransmitters, regulating appetite, energy metabolism, immunity, and neural functions. Additionally, GM influences the immune system by interacting with epithelial cells and stimulating immune responses. Despite recent advances, further research is needed to elucidate species-specific mechanisms underlying GM-host interactions, the ecological implications of GM diversity, and its applications in aquaculture to optimize fish health and performance.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1495373\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1495373","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
A fishy gut feeling – current knowledge on gut microbiota in teleosts
The importance of the gastrointestinal microbiota (GM) in health and disease is widely recognized. Although less is known in fish than in mammals, advances in molecular techniques, such as 16S rRNA sequencing, have facilitated characterization of fish GM, comprising resident autochthonous and transient allochthonous bacteria. The microbial diversity and composition are strongly influenced by diet. High-protein diets, including alternative ingredients like plant and insect proteins, modify GM, impacting beneficial bacteria e.g. Cetobacterium. Lipids affect microbial metabolism and short-chain fatty acid (SCFA) production, while excessive carbohydrates can disrupt GM balance, causing enteritis. Dietary additives, including probiotics, prebiotics, and antibiotics, effectively modulate GM. Probiotics enhance immunity and growth, prebiotics support beneficial bacteria, and antibiotics, though effective against pathogens, disrupt microbial diversity and may promote antibiotic resistance. Environmental factors, such as temperature, salinity, and pollution, significantly influence GM. Elevated temperatures and salinity shifts alter microbial composition, and pollutants introduce toxins that compromise intestinal function and microbial diversity. Stress and pathogen infections further destabilize GM, often favoring pathogenic bacteria. GM communicates with the host via metabolites such as SCFAs, bile acids, and neurotransmitters, regulating appetite, energy metabolism, immunity, and neural functions. Additionally, GM influences the immune system by interacting with epithelial cells and stimulating immune responses. Despite recent advances, further research is needed to elucidate species-specific mechanisms underlying GM-host interactions, the ecological implications of GM diversity, and its applications in aquaculture to optimize fish health and performance.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.