{"title":"调整碳的多孔结构以增强C(CO)-C键的氧化裂解和酯化反应。","authors":"Chao Xie, Qidong Hou, Hengli Qian, Yao Tang, Ruite Lai, Xinyu Bai, Guanjie Yu, Shuai Lv, Tianliang Xia, Zejun Liu, Xin Huang, Xiaojun Shen, Meiting Ju","doi":"10.1002/cssc.202402553","DOIUrl":null,"url":null,"abstract":"<p><p>The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds. Systematic investigations revealed that the hierarchical porous structure enhances the adsorption of O<sub>2</sub> and ketones, thereby boosting the catalytic efficiency of defects. This catalyst exhibits performance comparable to that of the reported nitrogen-doped or metal nanoparticle-supported carbon materials, as well as transition metal-based homogeneous catalytic systems. This work deepens our understanding of the reaction process underlying this transformation and provides insights for designing efficient carbon-based materials for oxidative transformations.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402553"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.\",\"authors\":\"Chao Xie, Qidong Hou, Hengli Qian, Yao Tang, Ruite Lai, Xinyu Bai, Guanjie Yu, Shuai Lv, Tianliang Xia, Zejun Liu, Xin Huang, Xiaojun Shen, Meiting Ju\",\"doi\":\"10.1002/cssc.202402553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds. Systematic investigations revealed that the hierarchical porous structure enhances the adsorption of O<sub>2</sub> and ketones, thereby boosting the catalytic efficiency of defects. This catalyst exhibits performance comparable to that of the reported nitrogen-doped or metal nanoparticle-supported carbon materials, as well as transition metal-based homogeneous catalytic systems. This work deepens our understanding of the reaction process underlying this transformation and provides insights for designing efficient carbon-based materials for oxidative transformations.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402553\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402553\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402553","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.
The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds. Systematic investigations revealed that the hierarchical porous structure enhances the adsorption of O2 and ketones, thereby boosting the catalytic efficiency of defects. This catalyst exhibits performance comparable to that of the reported nitrogen-doped or metal nanoparticle-supported carbon materials, as well as transition metal-based homogeneous catalytic systems. This work deepens our understanding of the reaction process underlying this transformation and provides insights for designing efficient carbon-based materials for oxidative transformations.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology