gneSeqCOO:一种基于肿瘤整体RNA测序谱的弥漫性大b细胞淋巴瘤细胞起源分类的新方法。

IF 2.2 4区 医学 Q3 HEMATOLOGY Leukemia & Lymphoma Pub Date : 2025-01-10 DOI:10.1080/10428194.2024.2446613
Will Harris, Yi Cao, Franck Morschhauser, Gilles Salles, Yanwen Jiang, Alessia Bottos, Georg Lenz, Christopher R Bolen
{"title":"gneSeqCOO:一种基于肿瘤整体RNA测序谱的弥漫性大b细胞淋巴瘤细胞起源分类的新方法。","authors":"Will Harris, Yi Cao, Franck Morschhauser, Gilles Salles, Yanwen Jiang, Alessia Bottos, Georg Lenz, Christopher R Bolen","doi":"10.1080/10428194.2024.2446613","DOIUrl":null,"url":null,"abstract":"<p><p>The cell of origin (COO) classification is an expression-based tumor algorithm identifying molecular subtypes of diffuse large B-cell lymphoma (DLBCL) with distinct prognostic characteristics. Traditional immunohistochemical methods for classifying COO subtypes have poor concordance and limited prognostic value in frontline DLBCL. In contrast, RNA-based metrics like the NanoString Lymphoma Subtyping Test (LST) define more robust subtypes with validated prognostic associations. This study introduces gneSeqCOO, an algorithm using bulk RNA Sequencing (RNASeq) profiles of individual tumor biopsies for COO classification based on a fixed reference. This method produced consistent per-sample results and was robust to variation in RNA quality and sequencing bias. Validation in >1000 DLBCL samples showed high concordance with the NanoString LST assay, even in cohorts containing only one COO subtype. gneSeqCOO presents a robust and versatile alternative to existing assays, potentially reducing the need for additional samples where RNASeq was already generated. The package is available at https://github.com/Genentech/gneSeqCOO.</p>","PeriodicalId":18047,"journal":{"name":"Leukemia & Lymphoma","volume":" ","pages":"1-8"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"gneSeqCOO: a novel method for classifying diffuse large B-cell lymphoma cell of origin based on bulk tumor RNA sequencing profiles.\",\"authors\":\"Will Harris, Yi Cao, Franck Morschhauser, Gilles Salles, Yanwen Jiang, Alessia Bottos, Georg Lenz, Christopher R Bolen\",\"doi\":\"10.1080/10428194.2024.2446613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cell of origin (COO) classification is an expression-based tumor algorithm identifying molecular subtypes of diffuse large B-cell lymphoma (DLBCL) with distinct prognostic characteristics. Traditional immunohistochemical methods for classifying COO subtypes have poor concordance and limited prognostic value in frontline DLBCL. In contrast, RNA-based metrics like the NanoString Lymphoma Subtyping Test (LST) define more robust subtypes with validated prognostic associations. This study introduces gneSeqCOO, an algorithm using bulk RNA Sequencing (RNASeq) profiles of individual tumor biopsies for COO classification based on a fixed reference. This method produced consistent per-sample results and was robust to variation in RNA quality and sequencing bias. Validation in >1000 DLBCL samples showed high concordance with the NanoString LST assay, even in cohorts containing only one COO subtype. gneSeqCOO presents a robust and versatile alternative to existing assays, potentially reducing the need for additional samples where RNASeq was already generated. The package is available at https://github.com/Genentech/gneSeqCOO.</p>\",\"PeriodicalId\":18047,\"journal\":{\"name\":\"Leukemia & Lymphoma\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia & Lymphoma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10428194.2024.2446613\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia & Lymphoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10428194.2024.2446613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

起源细胞(COO)分类是一种基于表达的肿瘤算法,可识别具有不同预后特征的弥漫性大b细胞淋巴瘤(DLBCL)的分子亚型。传统的免疫组织化学方法对一线DLBCL的COO亚型分类一致性差,预后价值有限。相比之下,基于rna的指标,如纳米串淋巴瘤亚型测试(LST)定义了更可靠的亚型,并证实了与预后的关联。本研究介绍了gneSeqCOO,这是一种基于固定参考的基于单个肿瘤活检的大量RNA测序(RNASeq)谱进行COO分类的算法。该方法产生了一致的单样本结果,并且对RNA质量和测序偏差的变化具有鲁棒性。在bbbb1000个DLBCL样本中的验证显示,即使在仅包含一种COO亚型的队列中,也与NanoString LST检测结果高度一致。gneSeqCOO提供了一种强大而通用的替代现有检测方法,潜在地减少了对已经生成RNASeq的额外样品的需求。该软件包可在https://github.com/Genentech/gneSeqCOO上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gneSeqCOO: a novel method for classifying diffuse large B-cell lymphoma cell of origin based on bulk tumor RNA sequencing profiles.

The cell of origin (COO) classification is an expression-based tumor algorithm identifying molecular subtypes of diffuse large B-cell lymphoma (DLBCL) with distinct prognostic characteristics. Traditional immunohistochemical methods for classifying COO subtypes have poor concordance and limited prognostic value in frontline DLBCL. In contrast, RNA-based metrics like the NanoString Lymphoma Subtyping Test (LST) define more robust subtypes with validated prognostic associations. This study introduces gneSeqCOO, an algorithm using bulk RNA Sequencing (RNASeq) profiles of individual tumor biopsies for COO classification based on a fixed reference. This method produced consistent per-sample results and was robust to variation in RNA quality and sequencing bias. Validation in >1000 DLBCL samples showed high concordance with the NanoString LST assay, even in cohorts containing only one COO subtype. gneSeqCOO presents a robust and versatile alternative to existing assays, potentially reducing the need for additional samples where RNASeq was already generated. The package is available at https://github.com/Genentech/gneSeqCOO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leukemia & Lymphoma
Leukemia & Lymphoma 医学-血液学
CiteScore
4.10
自引率
3.80%
发文量
384
审稿时长
1.8 months
期刊介绍: Leukemia & Lymphoma in its fourth decade continues to provide an international forum for publication of high quality clinical, translational, and basic science research, and original observations relating to all aspects of hematological malignancies. The scope ranges from clinical and clinico-pathological investigations to fundamental research in disease biology, mechanisms of action of novel agents, development of combination chemotherapy, pharmacology and pharmacogenomics as well as ethics and epidemiology. Submissions of unique clinical observations or confirmatory studies are considered and published as Letters to the Editor
期刊最新文献
Dose-adjusted direct oral anticoagulants (DOACs) in patients with acute leukemia: experience of a tertiary cancer care center. Early impact of treatment modifications adopted for acute lymphoblastic leukemia during SARS-CoV-2 pandemic; a single center experience and lessons for LMICs. MicroRΝΑ analysis in patients with myelodysplastic neoplasms. Possible implications in risk stratification. Blinatumomab use in patients with CD19 positive B-ALL and hepatic dysfunction. Complete remission in a case of acute undifferentiated leukemia with novel combination therapy of FLAG-IDA and venetoclax.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1