Zachary McGraw, Lorenzo M. Polvani, Blaž Gasparini, Emily K. Van de Koot, Aiko Voigt
{"title":"云辐射对地表变暖的响应减弱了水文敏感性","authors":"Zachary McGraw, Lorenzo M. Polvani, Blaž Gasparini, Emily K. Van de Koot, Aiko Voigt","doi":"10.1029/2024gl112368","DOIUrl":null,"url":null,"abstract":"Precipitation is expected to increase in a warmer global climate, yet how sensitive precipitation is to warming depends on poorly constrained cloud radiative processes. Clouds respond to surface warming in ways that alter the atmosphere's ability to radiatively cool and hence form precipitation. Here we examine the links between cloud responses to warming, atmospheric radiative fluxes, and hydrological sensitivity in AMIP6 simulations. The clearest impacts come from high clouds, which reduce atmospheric radiative cooling as they rise in altitude in response to surface warming. Using cloud locking, we demonstrate that high cloud radiative changes weaken Earth's hydrological sensitivity to surface warming. The total impact of cloud radiative effects on hydrological sensitivity is halved by interactions between cloud and clear-sky radiative effects, yet is sufficiently large to be a major source of uncertainty in hydrological sensitivity.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"8 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cloud Radiative Response to Surface Warming Weakens Hydrological Sensitivity\",\"authors\":\"Zachary McGraw, Lorenzo M. Polvani, Blaž Gasparini, Emily K. Van de Koot, Aiko Voigt\",\"doi\":\"10.1029/2024gl112368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precipitation is expected to increase in a warmer global climate, yet how sensitive precipitation is to warming depends on poorly constrained cloud radiative processes. Clouds respond to surface warming in ways that alter the atmosphere's ability to radiatively cool and hence form precipitation. Here we examine the links between cloud responses to warming, atmospheric radiative fluxes, and hydrological sensitivity in AMIP6 simulations. The clearest impacts come from high clouds, which reduce atmospheric radiative cooling as they rise in altitude in response to surface warming. Using cloud locking, we demonstrate that high cloud radiative changes weaken Earth's hydrological sensitivity to surface warming. The total impact of cloud radiative effects on hydrological sensitivity is halved by interactions between cloud and clear-sky radiative effects, yet is sufficiently large to be a major source of uncertainty in hydrological sensitivity.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024gl112368\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112368","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Cloud Radiative Response to Surface Warming Weakens Hydrological Sensitivity
Precipitation is expected to increase in a warmer global climate, yet how sensitive precipitation is to warming depends on poorly constrained cloud radiative processes. Clouds respond to surface warming in ways that alter the atmosphere's ability to radiatively cool and hence form precipitation. Here we examine the links between cloud responses to warming, atmospheric radiative fluxes, and hydrological sensitivity in AMIP6 simulations. The clearest impacts come from high clouds, which reduce atmospheric radiative cooling as they rise in altitude in response to surface warming. Using cloud locking, we demonstrate that high cloud radiative changes weaken Earth's hydrological sensitivity to surface warming. The total impact of cloud radiative effects on hydrological sensitivity is halved by interactions between cloud and clear-sky radiative effects, yet is sufficiently large to be a major source of uncertainty in hydrological sensitivity.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.