{"title":"保证锂离子电池安全充电的计算高效双模模型预测控制","authors":"Suchita Undare;Kiana Karami;M. Scott Trimboli","doi":"10.1109/LCSYS.2024.3522217","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) has emerged as a promising strategy for the control of lithium-ion batteries due mainly to its capability for real-time constraint handling. However, classical implementations of MPC cannot guarantee stability, thus limiting its practical application. In addition, classical linear MPC relies on the computation of a constrained quadratic program at every time step, the computation of which may become burdensome when long horizons and numerous constraints are involved. The present paper applies a “dual mode” variation of MPC which reduces the necessity of implementing a quadratic program and provides assured stability of operation, at the cost of introducing a degree of conservatism.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3093-3098"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally Efficient Dual Mode Model Predictive Control to Ensure Safe Charging of Lithium-Ion Batteries\",\"authors\":\"Suchita Undare;Kiana Karami;M. Scott Trimboli\",\"doi\":\"10.1109/LCSYS.2024.3522217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) has emerged as a promising strategy for the control of lithium-ion batteries due mainly to its capability for real-time constraint handling. However, classical implementations of MPC cannot guarantee stability, thus limiting its practical application. In addition, classical linear MPC relies on the computation of a constrained quadratic program at every time step, the computation of which may become burdensome when long horizons and numerous constraints are involved. The present paper applies a “dual mode” variation of MPC which reduces the necessity of implementing a quadratic program and provides assured stability of operation, at the cost of introducing a degree of conservatism.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3093-3098\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813008/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10813008/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Computationally Efficient Dual Mode Model Predictive Control to Ensure Safe Charging of Lithium-Ion Batteries
Model predictive control (MPC) has emerged as a promising strategy for the control of lithium-ion batteries due mainly to its capability for real-time constraint handling. However, classical implementations of MPC cannot guarantee stability, thus limiting its practical application. In addition, classical linear MPC relies on the computation of a constrained quadratic program at every time step, the computation of which may become burdensome when long horizons and numerous constraints are involved. The present paper applies a “dual mode” variation of MPC which reduces the necessity of implementing a quadratic program and provides assured stability of operation, at the cost of introducing a degree of conservatism.