从单轨迹到安全控制器的离散时间非线性多项式系统综合

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-16 DOI:10.1109/LCSYS.2024.3519017
Behrad Samari;Omid Akbarzadeh;Mahdieh Zaker;Abolfazl Lavaei
{"title":"从单轨迹到安全控制器的离散时间非线性多项式系统综合","authors":"Behrad Samari;Omid Akbarzadeh;Mahdieh Zaker;Abolfazl Lavaei","doi":"10.1109/LCSYS.2024.3519017","DOIUrl":null,"url":null,"abstract":"This letter is concerned with developing a data-driven approach for learning control barrier certificates (CBCs) and associated safety controllers for discrete-time input-affine nonlinear systems with polynomial dynamics with (partially) unknown mathematical models, guaranteeing system safety over an infinite time horizon. The proposed approach leverages measured data acquired through an input-state observation, referred to as a single trajectory, collected over a specified time horizon. By fulfilling a certain rank condition, which ensures the unknown system is persistently excited by the collected data, we design a CBC and its corresponding safety controller directly from the finite-length observed data, without explicitly identifying the unknown dynamical system. This is achieved through proposing a data-based sum-of-squares optimization (SOS) program to systematically design CBCs and their safety controllers. We validate our data-driven approach over two physical case studies including a jet engine and a Lorenz system, demonstrating the efficacy of our proposed method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3123-3128"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From a Single Trajectory to Safety Controller Synthesis of Discrete-Time Nonlinear Polynomial Systems\",\"authors\":\"Behrad Samari;Omid Akbarzadeh;Mahdieh Zaker;Abolfazl Lavaei\",\"doi\":\"10.1109/LCSYS.2024.3519017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter is concerned with developing a data-driven approach for learning control barrier certificates (CBCs) and associated safety controllers for discrete-time input-affine nonlinear systems with polynomial dynamics with (partially) unknown mathematical models, guaranteeing system safety over an infinite time horizon. The proposed approach leverages measured data acquired through an input-state observation, referred to as a single trajectory, collected over a specified time horizon. By fulfilling a certain rank condition, which ensures the unknown system is persistently excited by the collected data, we design a CBC and its corresponding safety controller directly from the finite-length observed data, without explicitly identifying the unknown dynamical system. This is achieved through proposing a data-based sum-of-squares optimization (SOS) program to systematically design CBCs and their safety controllers. We validate our data-driven approach over two physical case studies including a jet engine and a Lorenz system, demonstrating the efficacy of our proposed method.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3123-3128\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804185/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804185/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这封信是关于开发一种数据驱动的方法,用于学习控制屏障证书(CBCs)和相关的安全控制器,用于具有多项式动力学的离散时间输入仿射非线性系统,具有(部分)未知的数学模型,保证系统在无限时间范围内的安全性。提出的方法利用通过输入状态观察获得的测量数据,称为单个轨迹,在指定的时间范围内收集。通过满足一定的秩条件,确保未知系统被采集的数据持续激励,我们直接从有限长度的观测数据设计了CBC及其相应的安全控制器,而无需明确识别未知动力系统。这是通过提出一个基于数据的平方和优化(SOS)程序来系统地设计CBCs及其安全控制器来实现的。我们通过两个物理案例研究(包括喷气发动机和Lorenz系统)验证了我们的数据驱动方法,证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From a Single Trajectory to Safety Controller Synthesis of Discrete-Time Nonlinear Polynomial Systems
This letter is concerned with developing a data-driven approach for learning control barrier certificates (CBCs) and associated safety controllers for discrete-time input-affine nonlinear systems with polynomial dynamics with (partially) unknown mathematical models, guaranteeing system safety over an infinite time horizon. The proposed approach leverages measured data acquired through an input-state observation, referred to as a single trajectory, collected over a specified time horizon. By fulfilling a certain rank condition, which ensures the unknown system is persistently excited by the collected data, we design a CBC and its corresponding safety controller directly from the finite-length observed data, without explicitly identifying the unknown dynamical system. This is achieved through proposing a data-based sum-of-squares optimization (SOS) program to systematically design CBCs and their safety controllers. We validate our data-driven approach over two physical case studies including a jet engine and a Lorenz system, demonstrating the efficacy of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1