具有Koopman线性嵌入的非线性系统的Willems基本引理

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-26 DOI:10.1109/LCSYS.2024.3522594
Xu Shang;Jorge Cortés;Yang Zheng
{"title":"具有Koopman线性嵌入的非线性系统的Willems基本引理","authors":"Xu Shang;Jorge Cortés;Yang Zheng","doi":"10.1109/LCSYS.2024.3522594","DOIUrl":null,"url":null,"abstract":"Koopman operator theory and Willems’ fundamental lemma both can provide (approximated) data-driven linear representation for nonlinear systems. However, choosing lifting functions for the Koopman operator is challenging, and the quality of the data-driven model from Willems’ fundamental lemma has no guarantee for general nonlinear systems. In this letter, we extend Willems’ fundamental lemma for a class of nonlinear systems that admit a Koopman linear embedding. We first characterize the relationship between the trajectory space of a nonlinear system and that of its Koopman linear embedding. We then prove that the trajectory space of Koopman linear embedding can be formed by a linear combination of rich-enough trajectories from the nonlinear system. Combining these two results leads to a data-driven representation of the nonlinear system, which bypasses the need for the lifting functions and thus eliminates the associated bias errors. Our results illustrate that both the width (more trajectories) and depth (longer trajectories) of the trajectory library are important to ensure the accuracy of the data-driven model.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3135-3140"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Willems’ Fundamental Lemma for Nonlinear Systems With Koopman Linear Embedding\",\"authors\":\"Xu Shang;Jorge Cortés;Yang Zheng\",\"doi\":\"10.1109/LCSYS.2024.3522594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Koopman operator theory and Willems’ fundamental lemma both can provide (approximated) data-driven linear representation for nonlinear systems. However, choosing lifting functions for the Koopman operator is challenging, and the quality of the data-driven model from Willems’ fundamental lemma has no guarantee for general nonlinear systems. In this letter, we extend Willems’ fundamental lemma for a class of nonlinear systems that admit a Koopman linear embedding. We first characterize the relationship between the trajectory space of a nonlinear system and that of its Koopman linear embedding. We then prove that the trajectory space of Koopman linear embedding can be formed by a linear combination of rich-enough trajectories from the nonlinear system. Combining these two results leads to a data-driven representation of the nonlinear system, which bypasses the need for the lifting functions and thus eliminates the associated bias errors. Our results illustrate that both the width (more trajectories) and depth (longer trajectories) of the trajectory library are important to ensure the accuracy of the data-driven model.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3135-3140\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10815996/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10815996/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Koopman算子理论和Willems基本引理都可以为非线性系统提供(近似的)数据驱动线性表示。然而,为Koopman算子选择提升函数是一个挑战,而且对于一般的非线性系统,基于Willems基本引理的数据驱动模型的质量无法保证。在这封信中,我们扩展了一类允许库普曼线性嵌入的非线性系统的Willems的基本引理。我们首先描述了非线性系统的轨迹空间与其库普曼线性嵌入的轨迹空间之间的关系。然后证明了库普曼线性嵌入的轨迹空间可以由非线性系统中足够丰富的轨迹的线性组合来形成。结合这两个结果可以得到非线性系统的数据驱动表示,它绕过了对提升函数的需要,从而消除了相关的偏差误差。我们的结果表明,轨迹库的宽度(更多轨迹)和深度(更长的轨迹)对于确保数据驱动模型的准确性都很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Willems’ Fundamental Lemma for Nonlinear Systems With Koopman Linear Embedding
Koopman operator theory and Willems’ fundamental lemma both can provide (approximated) data-driven linear representation for nonlinear systems. However, choosing lifting functions for the Koopman operator is challenging, and the quality of the data-driven model from Willems’ fundamental lemma has no guarantee for general nonlinear systems. In this letter, we extend Willems’ fundamental lemma for a class of nonlinear systems that admit a Koopman linear embedding. We first characterize the relationship between the trajectory space of a nonlinear system and that of its Koopman linear embedding. We then prove that the trajectory space of Koopman linear embedding can be formed by a linear combination of rich-enough trajectories from the nonlinear system. Combining these two results leads to a data-driven representation of the nonlinear system, which bypasses the need for the lifting functions and thus eliminates the associated bias errors. Our results illustrate that both the width (more trajectories) and depth (longer trajectories) of the trajectory library are important to ensure the accuracy of the data-driven model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1