高性能准固态锌-空气电池用有机-无机杂化水凝胶电解质

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2025-01-10 DOI:10.1007/s11705-025-2519-4
Mingzhu Wu, Niu Huang, Minghui Lv, Fengyi Wang, Fang Ma, Yihan Deng, Panpan Sun, Yong Zheng, Wei Liu, Liqun Ye
{"title":"高性能准固态锌-空气电池用有机-无机杂化水凝胶电解质","authors":"Mingzhu Wu,&nbsp;Niu Huang,&nbsp;Minghui Lv,&nbsp;Fengyi Wang,&nbsp;Fang Ma,&nbsp;Yihan Deng,&nbsp;Panpan Sun,&nbsp;Yong Zheng,&nbsp;Wei Liu,&nbsp;Liqun Ye","doi":"10.1007/s11705-025-2519-4","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO<sub>2</sub>(NH<sub>2</sub>) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries\",\"authors\":\"Mingzhu Wu,&nbsp;Niu Huang,&nbsp;Minghui Lv,&nbsp;Fengyi Wang,&nbsp;Fang Ma,&nbsp;Yihan Deng,&nbsp;Panpan Sun,&nbsp;Yong Zheng,&nbsp;Wei Liu,&nbsp;Liqun Ye\",\"doi\":\"10.1007/s11705-025-2519-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO<sub>2</sub>(NH<sub>2</sub>) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2519-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2519-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有高能量密度和安全性的柔性水锌空气电池已引起人们的广泛关注。凝胶聚合物电解质已成为传统液体电解质的首选,因为它们具有防止电解质泄漏的能力。本研究设计了一种具有高耐碱性和离子电导率的复合型PANa-PVP-TiO2(NH2)水凝胶,其中无机TiO2(NH2)纳米粒子均匀分布并集成到聚丙烯酸钠和聚乙烯醇吡咯烷酮的有机双网络中。有机-无机杂化结构增强了电解质溶液的吸收和保留能力,导致凝胶聚合物电解质在柔性水锌-空气电池的整个操作过程中具有令人印象深刻的离子电导率。此外,TiO2(NH2)纳米粒子的掺入和双网络结构有效地增强了凝胶聚合物电解质的机械强度和柔韧性,抑制了副产物和锌枝晶的形成。提高了锌对称电池的循环寿命和优异的功率密度,延长了柔性水锌-空气电池的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries

Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries Multiperiod optimization of closed seawater circulating cooling water system Formation of atomically dispersed zirconium through the utilization of nanoconfined environments Construction of CS@APP@UiO-66 through self-assembly technology as flame retardant and smoke suppressant for epoxy resins Optimizing polylactic acid: synthesis, properties, and regulatory strategies for food packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1