通过低成本近端RGB成像和多变量分析识别作物类型

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2025-01-13 DOI:10.1007/s12517-024-12165-2
Koushik Banerjee, Suman Dutta, Bappa Das, Debasish Roy, Suman Sen, Bhabani Prasad Mandal, Arghya Chatterjee
{"title":"通过低成本近端RGB成像和多变量分析识别作物类型","authors":"Koushik Banerjee,&nbsp;Suman Dutta,&nbsp;Bappa Das,&nbsp;Debasish Roy,&nbsp;Suman Sen,&nbsp;Bhabani Prasad Mandal,&nbsp;Arghya Chatterjee","doi":"10.1007/s12517-024-12165-2","DOIUrl":null,"url":null,"abstract":"<div><p>The current study is an attempt to use low cost red green blue (RGB) image–based vegetation indices (VIs), obtained from simple RGB camera, in separating six different field crops. To achieve this, sixteen VIs were calculated and used as inputs in different multivariate analysis for separating wheat (<i>Triticum</i> spp), mustard (<i>Brassica</i> spp), cabbage (<i>Brassica oleracea</i>), pigeon pea (<i>Cajanus cajan</i>), brinjal (<i>Solanum</i> app) and chickpea (<i>Cicer arietinum</i>). Based on the classification and regression tree (CART) analysis, the study identified Green Red Ratio Index (GRRI), Color Intensity Index (INT), Color Index Of Vegetation (CIVE) and Woebbecke Index (WI) were statistically significant (<i>p</i> &lt; 0.05) in discriminating six different crops. The results obtained from CART analysis were subsequently compared with discriminant analysis, which showed an accuracy of 96.3% of classifying different crops. Hence, out of 16 indices, the study meaningfully identified four most sensitive VIs that can be used to classify different field crops. The information achieved in this study can help in commercial and scientific decision-making, planning in agribusinesses, and can be an important tool for conducting crop survey at regional scale.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crop type discrimination through low cost proximal RGB imaging and multivariate analysis\",\"authors\":\"Koushik Banerjee,&nbsp;Suman Dutta,&nbsp;Bappa Das,&nbsp;Debasish Roy,&nbsp;Suman Sen,&nbsp;Bhabani Prasad Mandal,&nbsp;Arghya Chatterjee\",\"doi\":\"10.1007/s12517-024-12165-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study is an attempt to use low cost red green blue (RGB) image–based vegetation indices (VIs), obtained from simple RGB camera, in separating six different field crops. To achieve this, sixteen VIs were calculated and used as inputs in different multivariate analysis for separating wheat (<i>Triticum</i> spp), mustard (<i>Brassica</i> spp), cabbage (<i>Brassica oleracea</i>), pigeon pea (<i>Cajanus cajan</i>), brinjal (<i>Solanum</i> app) and chickpea (<i>Cicer arietinum</i>). Based on the classification and regression tree (CART) analysis, the study identified Green Red Ratio Index (GRRI), Color Intensity Index (INT), Color Index Of Vegetation (CIVE) and Woebbecke Index (WI) were statistically significant (<i>p</i> &lt; 0.05) in discriminating six different crops. The results obtained from CART analysis were subsequently compared with discriminant analysis, which showed an accuracy of 96.3% of classifying different crops. Hence, out of 16 indices, the study meaningfully identified four most sensitive VIs that can be used to classify different field crops. The information achieved in this study can help in commercial and scientific decision-making, planning in agribusinesses, and can be an important tool for conducting crop survey at regional scale.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12165-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12165-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究尝试使用从简单的RGB相机获得的低成本红绿蓝(RGB)图像为基础的植被指数(VIs)来分离六种不同的大田作物。为了实现这一目标,计算了16个VIs,并将其作为不同多变量分析的输入,用于分离小麦(Triticum spp)、芥菜(Brassica spp)、卷心菜(Brassica oleracea)、木豆(Cajanus cajan)、茄子(Solanum app)和鹰嘴豆(Cicer arietinum)。基于分类与回归树(CART)分析,研究发现绿红比指数(GRRI)、颜色强度指数(INT)、植被颜色指数(CIVE)和Woebbecke指数(WI)在区分6种不同作物方面具有统计学意义(p < 0.05)。随后将CART分析结果与判别分析结果进行比较,判别分析对不同作物的分类准确率为96.3%。因此,在16个指标中,该研究有意义地确定了4个最敏感的VIs,可用于对不同的大田作物进行分类。本研究获得的信息有助于农业综合企业的商业和科学决策、规划,并可成为开展区域尺度作物调查的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop type discrimination through low cost proximal RGB imaging and multivariate analysis

The current study is an attempt to use low cost red green blue (RGB) image–based vegetation indices (VIs), obtained from simple RGB camera, in separating six different field crops. To achieve this, sixteen VIs were calculated and used as inputs in different multivariate analysis for separating wheat (Triticum spp), mustard (Brassica spp), cabbage (Brassica oleracea), pigeon pea (Cajanus cajan), brinjal (Solanum app) and chickpea (Cicer arietinum). Based on the classification and regression tree (CART) analysis, the study identified Green Red Ratio Index (GRRI), Color Intensity Index (INT), Color Index Of Vegetation (CIVE) and Woebbecke Index (WI) were statistically significant (p < 0.05) in discriminating six different crops. The results obtained from CART analysis were subsequently compared with discriminant analysis, which showed an accuracy of 96.3% of classifying different crops. Hence, out of 16 indices, the study meaningfully identified four most sensitive VIs that can be used to classify different field crops. The information achieved in this study can help in commercial and scientific decision-making, planning in agribusinesses, and can be an important tool for conducting crop survey at regional scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Numerical investigation on energy efficiency of horizontal heat pump systems in buildings heating and cooling: case study of Mostaganem (Algeria) Stability analysis of overburden rocks—a new approach An up-to-date perspective on technological accidents triggered by natural events Investigation of radiation shielding parameters of different heavy metallic glass compositions for gamma radiations Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—people, planet, and prosperity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1