点击水凝胶来评估刚性诱导的胰腺癌相关成纤维细胞的激活及其对癌细胞扩散的影响。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2025-01-10 DOI:10.1002/cbic.202400955
Chun-Yi Chang, Chien-Chi Lin
{"title":"点击水凝胶来评估刚性诱导的胰腺癌相关成纤维细胞的激活及其对癌细胞扩散的影响。","authors":"Chun-Yi Chang, Chien-Chi Lin","doi":"10.1002/cbic.202400955","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells. High matrix stiffness has been shown to activate cancer-associated fibroblasts (CAFs), increasing their interaction with pancreatic cancer cells (PCCs) through promoting proliferation, migration, and resistance to chemotherapy. With the advance of biomaterials science and engineering, it is now possible to design chemically defined matrices to understand the role of stiffness in activating pancreatic CAFs and how this may alter cancer cell migration. Here, we developed a norbornene-based click hydrogel system with independently tunable stiffness and cell adhesive ligand to evaluate stiffness-induced activation of CAFs and migration of PCCs. Our results show that matrix stiffness did not alter matrix deposition from CAFs but affected nuclear localization of Yes-associated protein (YAP). Our results also verify the role of CAFs on promoting PCC migration and an elevated substrate stiffness further increased PCC motility.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400955"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Click Hydrogels to Assess Stiffness-Induced Activation of Pancreatic Cancer-Associated Fibroblasts and Its Impact on Cancer Cell Spreading.\",\"authors\":\"Chun-Yi Chang, Chien-Chi Lin\",\"doi\":\"10.1002/cbic.202400955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells. High matrix stiffness has been shown to activate cancer-associated fibroblasts (CAFs), increasing their interaction with pancreatic cancer cells (PCCs) through promoting proliferation, migration, and resistance to chemotherapy. With the advance of biomaterials science and engineering, it is now possible to design chemically defined matrices to understand the role of stiffness in activating pancreatic CAFs and how this may alter cancer cell migration. Here, we developed a norbornene-based click hydrogel system with independently tunable stiffness and cell adhesive ligand to evaluate stiffness-induced activation of CAFs and migration of PCCs. Our results show that matrix stiffness did not alter matrix deposition from CAFs but affected nuclear localization of Yes-associated protein (YAP). Our results also verify the role of CAFs on promoting PCC migration and an elevated substrate stiffness further increased PCC motility.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e202400955\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400955\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400955","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)的特征是显著的纤维组织增生反应或过量细胞外基质的积累。PDAC基质具有异常高的硬度,这改变了癌细胞的行为,并为有效的药物传递创造了屏障。不幸的是,联合使用化疗和基质降解酶的临床试验导致了令人失望的结果,因为基质组织的降解可能加速了癌细胞的传播。高基质硬度已被证明可以激活癌症相关成纤维细胞(CAFs),通过促进增殖、迁移和对化疗的抵抗,增加它们与胰腺癌细胞(PCCs)的相互作用。随着生物材料科学和工程的进步,现在有可能设计化学定义的基质来理解刚度在激活胰腺CAFs中的作用,以及这如何改变癌细胞的迁移。在这里,我们开发了一个基于降冰片烯的click水凝胶系统,该系统具有独立可调的刚度和细胞粘附配体,以评估刚度诱导的CAFs激活和PCCs迁移。我们的研究结果表明,基质刚度不会改变CAFs的基质沉积,但会影响yes相关蛋白(YAP)的核定位。我们的研究结果还验证了CAFs在促进PCC迁移方面的作用,并且基底刚度的提高进一步增加了PCC的运动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Click Hydrogels to Assess Stiffness-Induced Activation of Pancreatic Cancer-Associated Fibroblasts and Its Impact on Cancer Cell Spreading.

Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells. High matrix stiffness has been shown to activate cancer-associated fibroblasts (CAFs), increasing their interaction with pancreatic cancer cells (PCCs) through promoting proliferation, migration, and resistance to chemotherapy. With the advance of biomaterials science and engineering, it is now possible to design chemically defined matrices to understand the role of stiffness in activating pancreatic CAFs and how this may alter cancer cell migration. Here, we developed a norbornene-based click hydrogel system with independently tunable stiffness and cell adhesive ligand to evaluate stiffness-induced activation of CAFs and migration of PCCs. Our results show that matrix stiffness did not alter matrix deposition from CAFs but affected nuclear localization of Yes-associated protein (YAP). Our results also verify the role of CAFs on promoting PCC migration and an elevated substrate stiffness further increased PCC motility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Expanding the Enzymatic Toolbox for Carboligation: Increasing the Diversity of the 'Split' Transketolase Sequence Space. Silencing of O-GlcNAc transferase attenuated O-GlcNAcylation and metastatic potentials of melanoma cells through suppression of Akt-NFkB signaling pathway. Copper Depletion in Tumors Boosts Immunotherapy. Radical Strategy towards N-glycosides: Current Advances and Future Prospects. Laccase Functional Analysis: Substrates, Activity Assays, Challenges, and Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1