三维生物制造在软骨缺损修复与再生中的研究进展。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2025-01-10 DOI:10.1088/1758-5090/ada8e1
Zenghui Zheng, Dongmei Yu, Haoyu Wang, Hao Wu, Zhen Tang, Qi Wu, Pengfei Cao, Zhiyuan Chen, Hai Huang, Xiaokang Li, Chaozong Liu, Zheng Guo
{"title":"三维生物制造在软骨缺损修复与再生中的研究进展。","authors":"Zenghui Zheng, Dongmei Yu, Haoyu Wang, Hao Wu, Zhen Tang, Qi Wu, Pengfei Cao, Zhiyuan Chen, Hai Huang, Xiaokang Li, Chaozong Liu, Zheng Guo","doi":"10.1088/1758-5090/ada8e1","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue. Current repair methods, for instance microfracture procedure (MF), Autologous chondrocyte implantation (ACI), and Osteochondral Autologous Transfer Surgery (OATS) have been applied in clinical practice. However, each procedure has inherent limitation. For instance, microfracture surgery associates with increased subchondral cyst formation and brittle subchondral bone. ACI procedure involves two surgeries, and associate with potential risks infection and delamination of the regenerated cartilage. In addition, chondrocyte implantation's efficacy depends on the patient's weight, joint pathology, gender-related histological changes of cartilage, and hormonal influences that affect treatment and prognosis. So far, it is a still a grand challenge for achieving a clinical satisfactory in repairing and regeneration of cartilage defects using conditional strategies. 3D biofabrication provide a potential to fabricate biomimetic articular cartilage construct that has shown promise in specific cartilage repair and regeneration of patients. This review reported the techniques of 3D bioprinting applied for cartilage repair, and analyzed their respective merits and demerits, and limitations in clinical application. A summary of commonly used bioinks has been provided, along with an outlook on the challenges and prospects faced by 3D bioprinting in the application of cartilage tissue repair. It provided an overall review of current development and promising application of 3D biofabrication technology in articular cartilage repair.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.\",\"authors\":\"Zenghui Zheng, Dongmei Yu, Haoyu Wang, Hao Wu, Zhen Tang, Qi Wu, Pengfei Cao, Zhiyuan Chen, Hai Huang, Xiaokang Li, Chaozong Liu, Zheng Guo\",\"doi\":\"10.1088/1758-5090/ada8e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue. Current repair methods, for instance microfracture procedure (MF), Autologous chondrocyte implantation (ACI), and Osteochondral Autologous Transfer Surgery (OATS) have been applied in clinical practice. However, each procedure has inherent limitation. For instance, microfracture surgery associates with increased subchondral cyst formation and brittle subchondral bone. ACI procedure involves two surgeries, and associate with potential risks infection and delamination of the regenerated cartilage. In addition, chondrocyte implantation's efficacy depends on the patient's weight, joint pathology, gender-related histological changes of cartilage, and hormonal influences that affect treatment and prognosis. So far, it is a still a grand challenge for achieving a clinical satisfactory in repairing and regeneration of cartilage defects using conditional strategies. 3D biofabrication provide a potential to fabricate biomimetic articular cartilage construct that has shown promise in specific cartilage repair and regeneration of patients. This review reported the techniques of 3D bioprinting applied for cartilage repair, and analyzed their respective merits and demerits, and limitations in clinical application. A summary of commonly used bioinks has been provided, along with an outlook on the challenges and prospects faced by 3D bioprinting in the application of cartilage tissue repair. It provided an overall review of current development and promising application of 3D biofabrication technology in articular cartilage repair.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ada8e1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ada8e1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

三维生物打印是一种增材制造技术,可以制造出具有自然结构和功能的仿生组织。它涉及到在计算机辅助3D模型的基础上精确沉积生物墨水,包括细胞和生物活性因子。关节软骨损伤是骨科常见的问题。目前的修复方法,如微骨折手术(MF)、自体软骨细胞植入(ACI)和骨软骨自体移植手术(OATS)已在临床应用。然而,每种方法都有其固有的局限性。例如,微骨折手术与软骨下囊肿形成增加和软骨下骨脆性有关。ACI手术包括两次手术,并伴有再生软骨感染和分层的潜在风险。此外,软骨细胞植入的疗效取决于患者的体重、关节病理、与性别相关的软骨组织学变化以及影响治疗和预后的激素影响。目前,利用条件策略修复和再生软骨缺损仍是一个巨大的挑战。三维生物制造为仿生关节软骨结构的制造提供了潜力,在患者的特定软骨修复和再生中显示出前景。本文综述了生物3D打印技术在软骨修复中的应用,分析了它们各自的优缺点以及在临床应用中的局限性。总结了常用的生物墨水,并展望了生物3D打印在软骨组织修复应用中面临的挑战和前景。综述了三维生物制造技术在关节软骨修复中的发展现状及应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.

Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue. Current repair methods, for instance microfracture procedure (MF), Autologous chondrocyte implantation (ACI), and Osteochondral Autologous Transfer Surgery (OATS) have been applied in clinical practice. However, each procedure has inherent limitation. For instance, microfracture surgery associates with increased subchondral cyst formation and brittle subchondral bone. ACI procedure involves two surgeries, and associate with potential risks infection and delamination of the regenerated cartilage. In addition, chondrocyte implantation's efficacy depends on the patient's weight, joint pathology, gender-related histological changes of cartilage, and hormonal influences that affect treatment and prognosis. So far, it is a still a grand challenge for achieving a clinical satisfactory in repairing and regeneration of cartilage defects using conditional strategies. 3D biofabrication provide a potential to fabricate biomimetic articular cartilage construct that has shown promise in specific cartilage repair and regeneration of patients. This review reported the techniques of 3D bioprinting applied for cartilage repair, and analyzed their respective merits and demerits, and limitations in clinical application. A summary of commonly used bioinks has been provided, along with an outlook on the challenges and prospects faced by 3D bioprinting in the application of cartilage tissue repair. It provided an overall review of current development and promising application of 3D biofabrication technology in articular cartilage repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Pneumatic conveying inkjet bioprinting for the processing of living cells. Volumetric bioprinting of the osteoid niche. Optimizing extrusion-based 3D bioprinting of plant cells with enhanced resolution and cell viability. Electrospun robust, biodegradable, bioactive, and nanostructured sutures to accelerate the chronic wound healing. In vivo vessel connection of pre-vascularised 3D-bioprinted gingival connective tissue substitutes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1