SUMOylated GLUT1抑制骨关节炎期间软骨细胞糖代谢紊乱。

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Glycoconjugate Journal Pub Date : 2025-01-11 DOI:10.1007/s10719-024-10176-5
Liwei Xiong
{"title":"SUMOylated GLUT1抑制骨关节炎期间软骨细胞糖代谢紊乱。","authors":"Liwei Xiong","doi":"10.1007/s10719-024-10176-5","DOIUrl":null,"url":null,"abstract":"<p><p>Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro. GLUT1, SUMO1 and Chondrocyte-related genes including COL2A1, MMP13 and ADAMTS4 were evaluated using western blot. Cell viability and cell apoptosis of chondrocytes were measured by cell counting kit-8 assay and flow cytometry, respectively. The changes in glycometabolism were evaluated using extracellular acidification rate (ECAR) and glucose uptake assay. Co-immunoprecipitation (Co-IP) was used to verify the interaction between GLUT1 and SUMO1. The stabilization role of SUMO1 in GLUT1 was determined by cycloheximide assay. IL-1β induced the decrease of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 and the increase of cell apoptosis, MMP13 and ADAMTS4 in chondrocytes. However, overexpression of SUMO1 led to the reduction of cell apoptosis, MMP13 and ADAMTS4 and the elevation of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 in IL-1β-stimulated chondrocytes. There was SUMOylation sites on GLUT1. Intriguingly, SUMO1 was significantly enriched in GLUT1 using Co-IP assay, and stabilized GLUT1 in chondrocytes. SUMO1-mediated SUMOylation is capable of stabilizing GLUT1 to inhibit glycometabilsm disorder and cell apoptosis in IL-1β-stimulated chondrocytes.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUMOylated GLUT1 inhibited the glycometabolism disorder in chondroctyes during osteoarthritis.\",\"authors\":\"Liwei Xiong\",\"doi\":\"10.1007/s10719-024-10176-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro. GLUT1, SUMO1 and Chondrocyte-related genes including COL2A1, MMP13 and ADAMTS4 were evaluated using western blot. Cell viability and cell apoptosis of chondrocytes were measured by cell counting kit-8 assay and flow cytometry, respectively. The changes in glycometabolism were evaluated using extracellular acidification rate (ECAR) and glucose uptake assay. Co-immunoprecipitation (Co-IP) was used to verify the interaction between GLUT1 and SUMO1. The stabilization role of SUMO1 in GLUT1 was determined by cycloheximide assay. IL-1β induced the decrease of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 and the increase of cell apoptosis, MMP13 and ADAMTS4 in chondrocytes. However, overexpression of SUMO1 led to the reduction of cell apoptosis, MMP13 and ADAMTS4 and the elevation of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 in IL-1β-stimulated chondrocytes. There was SUMOylation sites on GLUT1. Intriguingly, SUMO1 was significantly enriched in GLUT1 using Co-IP assay, and stabilized GLUT1 in chondrocytes. SUMO1-mediated SUMOylation is capable of stabilizing GLUT1 to inhibit glycometabilsm disorder and cell apoptosis in IL-1β-stimulated chondrocytes.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-024-10176-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-024-10176-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖转运体1(GLUT1)的减少甚至缺失可能导致软骨纤维化和骨关节炎。本研究旨在通过小泛素样修饰子1(SUMO1)研究骨关节炎中GLUT1的SUMO化,并探讨SUMO化的GLUT1在软骨细胞糖代谢、增殖和凋亡中的作用。用 10 毫微克/毫升的 IL-1β 培养人软骨细胞,以模拟体外骨关节炎。用 Western 印迹法对 GLUT1、SUMO1 和软骨细胞相关基因(包括 COL2A1、MMP13 和 ADAMTS4)进行了评估。细胞计数试剂盒-8测定法和流式细胞术分别测定了软骨细胞的细胞活力和细胞凋亡。糖代谢的变化采用细胞外酸化率(ECAR)和葡萄糖摄取测定法进行评估。共免疫沉淀(Co-IP)用于验证 GLUT1 和 SUMO1 之间的相互作用。环己亚胺试验确定了 SUMO1 在 GLUT1 中的稳定作用。IL-1β 诱导软骨细胞中 GLUT1、细胞活力、ECAR、葡萄糖摄取和 COL2A1 的下降,以及细胞凋亡、MMP13 和 ADAMTS4 的增加。然而,过表达 SUMO1 会导致 IL-1β 刺激的软骨细胞中细胞凋亡、MMP13 和 ADAMTS4 减少,GLUT1、细胞活力、ECAR、葡萄糖摄取量和 COL2A1 增加。GLUT1 上存在 SUMO 化位点。有趣的是,通过 Co-IP 分析,SUMO1 在 GLUT1 上明显富集,并稳定了软骨细胞中的 GLUT1。SUMO1介导的SUMOylation能够稳定GLUT1,从而抑制IL-1β刺激下软骨细胞的糖代谢紊乱和细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SUMOylated GLUT1 inhibited the glycometabolism disorder in chondroctyes during osteoarthritis.

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro. GLUT1, SUMO1 and Chondrocyte-related genes including COL2A1, MMP13 and ADAMTS4 were evaluated using western blot. Cell viability and cell apoptosis of chondrocytes were measured by cell counting kit-8 assay and flow cytometry, respectively. The changes in glycometabolism were evaluated using extracellular acidification rate (ECAR) and glucose uptake assay. Co-immunoprecipitation (Co-IP) was used to verify the interaction between GLUT1 and SUMO1. The stabilization role of SUMO1 in GLUT1 was determined by cycloheximide assay. IL-1β induced the decrease of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 and the increase of cell apoptosis, MMP13 and ADAMTS4 in chondrocytes. However, overexpression of SUMO1 led to the reduction of cell apoptosis, MMP13 and ADAMTS4 and the elevation of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 in IL-1β-stimulated chondrocytes. There was SUMOylation sites on GLUT1. Intriguingly, SUMO1 was significantly enriched in GLUT1 using Co-IP assay, and stabilized GLUT1 in chondrocytes. SUMO1-mediated SUMOylation is capable of stabilizing GLUT1 to inhibit glycometabilsm disorder and cell apoptosis in IL-1β-stimulated chondrocytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
期刊最新文献
Inhibition of chondroitin sulphate-degrading enzyme Chondroitinase ABC by dextran sulphate. Effect of CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor on lipid metabolism in human bronchial epithelial cells. SUMOylated GLUT1 inhibited the glycometabolism disorder in chondroctyes during osteoarthritis. Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1