Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa, Eder Lilia Romero
{"title":"雾化杂交纳米古小体:抗炎活性、抗微生物活性和对A549细胞的细胞毒性。","authors":"Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa, Eder Lilia Romero","doi":"10.3390/ijms26010392","DOIUrl":null,"url":null,"abstract":"<p><p>The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea <i>Halorubrum tebenquichense</i> and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (<i>Ilex paraguariensis)</i> extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), -27 mV ζ potential, 90% Ag<sup>0</sup> and λ<sub>max</sub> 420 nm BSs were obtained. We further prepared ~100-200 nm diameter, -57 mV ζ potential BS-nanoARC and ~300 nm diameter, -37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against <i>S. aureus</i> (MIC<sub>90</sub>: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC<sub>50</sub> 12 µg Ag/mL vs. IC<sub>50</sub> ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.\",\"authors\":\"Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa, Eder Lilia Romero\",\"doi\":\"10.3390/ijms26010392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea <i>Halorubrum tebenquichense</i> and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (<i>Ilex paraguariensis)</i> extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), -27 mV ζ potential, 90% Ag<sup>0</sup> and λ<sub>max</sub> 420 nm BSs were obtained. We further prepared ~100-200 nm diameter, -57 mV ζ potential BS-nanoARC and ~300 nm diameter, -37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against <i>S. aureus</i> (MIC<sub>90</sub>: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC<sub>50</sub> 12 µg Ag/mL vs. IC<sub>50</sub> ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms26010392\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26010392","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea Halorubrum tebenquichense and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (Ilex paraguariensis) extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), -27 mV ζ potential, 90% Ag0 and λmax 420 nm BSs were obtained. We further prepared ~100-200 nm diameter, -57 mV ζ potential BS-nanoARC and ~300 nm diameter, -37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against S. aureus (MIC90: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC50 12 µg Ag/mL vs. IC50 ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).