Alberto J. Espay , Andrew J. Lees , Francisco Cardoso , Steven J. Frucht , Daniel Erskine , Ivette M. Sandoval , Luis Daniel Bernal-Conde , Andrea Sturchio , Alberto Imarisio , Christian Hoffmann , Kora T. Montemagno , Dragomir Milovanovic , Glenda M. Halliday , Fredric P. Manfredsson
{"title":"α-突触核蛋白种子扩增试验:解释帕金森病病理试验。","authors":"Alberto J. Espay , Andrew J. Lees , Francisco Cardoso , Steven J. Frucht , Daniel Erskine , Ivette M. Sandoval , Luis Daniel Bernal-Conde , Andrea Sturchio , Alberto Imarisio , Christian Hoffmann , Kora T. Montemagno , Dragomir Milovanovic , Glenda M. Halliday , Fredric P. Manfredsson","doi":"10.1016/j.parkreldis.2024.107256","DOIUrl":null,"url":null,"abstract":"<div><div>The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst (“seed”) to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.</div></div>","PeriodicalId":19970,"journal":{"name":"Parkinsonism & related disorders","volume":"131 ","pages":"Article 107256"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology\",\"authors\":\"Alberto J. Espay , Andrew J. Lees , Francisco Cardoso , Steven J. Frucht , Daniel Erskine , Ivette M. Sandoval , Luis Daniel Bernal-Conde , Andrea Sturchio , Alberto Imarisio , Christian Hoffmann , Kora T. Montemagno , Dragomir Milovanovic , Glenda M. Halliday , Fredric P. Manfredsson\",\"doi\":\"10.1016/j.parkreldis.2024.107256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst (“seed”) to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.</div></div>\",\"PeriodicalId\":19970,\"journal\":{\"name\":\"Parkinsonism & related disorders\",\"volume\":\"131 \",\"pages\":\"Article 107256\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parkinsonism & related disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1353802024012689\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parkinsonism & related disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353802024012689","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst (“seed”) to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.
期刊介绍:
Parkinsonism & Related Disorders publishes the results of basic and clinical research contributing to the understanding, diagnosis and treatment of all neurodegenerative syndromes in which Parkinsonism, Essential Tremor or related movement disorders may be a feature. Regular features will include: Review Articles, Point of View articles, Full-length Articles, Short Communications, Case Reports and Letter to the Editor.