用于肝脏治疗性基因组编辑的mRNA负载LNP配方的发现和早期开发路线图。

Annette Bak, Liping Zhou, Joanna Rejman, Marianna Yanez Arteta, Gunilla Nilsson, Marianne Ashford
{"title":"用于肝脏治疗性基因组编辑的mRNA负载LNP配方的发现和早期开发路线图。","authors":"Annette Bak, Liping Zhou, Joanna Rejman, Marianna Yanez Arteta, Gunilla Nilsson, Marianne Ashford","doi":"10.1080/17425247.2025.2452295","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, <i>in vivo</i> chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases. It cannot get into cells,escape the endosome, and be translated to a disease-modifying protein without adelivery system such as lipid nanoparticles (LNPs).</p><p><strong>Areas covered: </strong>This article covers how to design, select, and develop an LNP fortherapeutic genome editing in the liver. The roadmap is divided into selectingthe right LNP in discovery via a design, make, test, analyze cycle (DMTA). Thedesign elements are focused on the ionizable lipid in a 4-component LNP, andinsights are provided for how to set an <i>invitro</i> and <i>in vivo</i> testingstrategy. The second section focuses on transforming the LNP into a clinicaldrug product and covers formulation, analytical development and processoptimization, with brief notes on supply and regulator strategies.</p><p><strong>Expert opinion: </strong>The perspective discusses the impact thatacademic-industry collaborations can have on developing new medicine fortherapeutic genome editing in the liver. From the cited collaborations an enhancedunderstanding of intracellular trafficking, notably endosomal escape, and theinternal structure of LNPs were attained and are deemed key to designingeffective and safe LNPs. The knowledge gained will also enable additional assays and structure activity relationships, which wouldlead to the design of the next generation delivery systems for nucleic acidtherapies.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.\",\"authors\":\"Annette Bak, Liping Zhou, Joanna Rejman, Marianna Yanez Arteta, Gunilla Nilsson, Marianne Ashford\",\"doi\":\"10.1080/17425247.2025.2452295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, <i>in vivo</i> chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases. It cannot get into cells,escape the endosome, and be translated to a disease-modifying protein without adelivery system such as lipid nanoparticles (LNPs).</p><p><strong>Areas covered: </strong>This article covers how to design, select, and develop an LNP fortherapeutic genome editing in the liver. The roadmap is divided into selectingthe right LNP in discovery via a design, make, test, analyze cycle (DMTA). Thedesign elements are focused on the ionizable lipid in a 4-component LNP, andinsights are provided for how to set an <i>invitro</i> and <i>in vivo</i> testingstrategy. The second section focuses on transforming the LNP into a clinicaldrug product and covers formulation, analytical development and processoptimization, with brief notes on supply and regulator strategies.</p><p><strong>Expert opinion: </strong>The perspective discusses the impact thatacademic-industry collaborations can have on developing new medicine fortherapeutic genome editing in the liver. From the cited collaborations an enhancedunderstanding of intracellular trafficking, notably endosomal escape, and theinternal structure of LNPs were attained and are deemed key to designingeffective and safe LNPs. The knowledge gained will also enable additional assays and structure activity relationships, which wouldlead to the design of the next generation delivery systems for nucleic acidtherapies.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2452295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2452295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在covid - 19疫苗之前,mRNA疗法是药物开发的一个小众领域。现在它们被用于疫苗开发、非病毒治疗、基因组编辑、体内嵌合抗原受体T (CAR - T)细胞疗法和蛋白质替代。mrna体积大,带电荷,容易被核酸酶降解。如果没有脂质纳米颗粒(LNPs)这样的传递系统,它就不能进入细胞,逃离核内体,并被翻译成一种疾病修饰蛋白。涉及领域:本文涵盖了如何设计、选择和开发用于肝脏治疗性基因组编辑的LNP。该路线图分为通过设计、制造、测试、分析周期(DMTA)来选择正确的LNP。设计元素集中在4组分LNP中的可电离脂质,并提供了如何设置体外和体内测试策略的见解。第二部分侧重于将LNP转化为临床药物,涵盖配方,分析开发和工艺优化,并简要说明供应和监管策略。专家意见:该观点讨论了学术与行业合作对开发用于肝脏治疗性基因组编辑的新药的影响。从引用的合作中,加深了对细胞内运输的理解,特别是内体逃逸,以及LNPs的内部结构,这被认为是设计有效和安全的LNPs的关键。所获得的知识还将使额外的分析和结构活性关系成为可能,这将导致下一代核酸疗法递送系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, in vivo chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases. It cannot get into cells,escape the endosome, and be translated to a disease-modifying protein without adelivery system such as lipid nanoparticles (LNPs).

Areas covered: This article covers how to design, select, and develop an LNP fortherapeutic genome editing in the liver. The roadmap is divided into selectingthe right LNP in discovery via a design, make, test, analyze cycle (DMTA). Thedesign elements are focused on the ionizable lipid in a 4-component LNP, andinsights are provided for how to set an invitro and in vivo testingstrategy. The second section focuses on transforming the LNP into a clinicaldrug product and covers formulation, analytical development and processoptimization, with brief notes on supply and regulator strategies.

Expert opinion: The perspective discusses the impact thatacademic-industry collaborations can have on developing new medicine fortherapeutic genome editing in the liver. From the cited collaborations an enhancedunderstanding of intracellular trafficking, notably endosomal escape, and theinternal structure of LNPs were attained and are deemed key to designingeffective and safe LNPs. The knowledge gained will also enable additional assays and structure activity relationships, which wouldlead to the design of the next generation delivery systems for nucleic acidtherapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing central nervous system drug delivery. Transdermal patch based on pressure-sensitive adhesive: the importance of adhesion for efficient drug delivery. What is the future potential of microbially degradable systems in oral drug delivery to the colon? An expert opinion on phytocompounds delivery for leishmaniasis treatment. Future applications of cyclic antimicrobial peptides in drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1