粘弹性基体上刚性球体的快速脱离:一个包含毛吉参数和预紧力效应的上界模型

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2025-01-06 DOI:10.1016/j.jmps.2025.106028
Qingao Wang , Antonio Papangelo , Michele Ciavarella , Huajian Gao , Qunyang Li
{"title":"粘弹性基体上刚性球体的快速脱离:一个包含毛吉参数和预紧力效应的上界模型","authors":"Qingao Wang ,&nbsp;Antonio Papangelo ,&nbsp;Michele Ciavarella ,&nbsp;Huajian Gao ,&nbsp;Qunyang Li","doi":"10.1016/j.jmps.2025.106028","DOIUrl":null,"url":null,"abstract":"<div><div>For a typical adhesive contact problem, a rigid sphere initially adhered to a relaxed viscoelastic substrate is pulled away from the substrate at finite speeds, and the pull-off force is often found to depend on the rate of pulling. Despite significant theoretical advancements in this area, how the apparent adhesion enhancement is affected by the Maugis parameter and preload remains unclear, and existing models are sometimes contentious. In this work, we revisit this adhesive contact problem and propose a theoretical model to predict the upper bound detachment behavior when the pulling speed approaches infinity. Our analysis reveals that the apparent work of adhesion can always be enhanced, regardless of the Maugis parameter, when the initial contact radius exceeds a critical threshold. Conversely, when the initial contact radius is below this critical value, the adhesion enhancement becomes limited and depends on both the Maugis parameter and the preload condition. Further model calculations suggest that the critical initial contact radius is dependent on the Maugis parameter. In the JKR-like regime, this critical radius converges to a constant value, whereas in the DMT-like regime, it diverges rapidly following an inverse power law with respect to the Maugis parameter. As a result, observing adhesion enhancement is generally more challenging in DMT-like contacts compared to JKR-like contacts. In the meantime, our model also suggests that the adhesion enhancement arises from the expansion of the cohesive zone area due to the viscoelastic properties of the material not only within the cohesive zone but also in the intimate contact zone. Overall, our findings offer a more comprehensive understanding of viscoelastic effects in adhesive contacts, which can be used to rationally predict or optimize adhesion strength in viscoelastic interfaces.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106028"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid detachment of a rigid sphere adhered to a viscoelastic substrate: An upper bound model incorporating Maugis parameter and preload effects\",\"authors\":\"Qingao Wang ,&nbsp;Antonio Papangelo ,&nbsp;Michele Ciavarella ,&nbsp;Huajian Gao ,&nbsp;Qunyang Li\",\"doi\":\"10.1016/j.jmps.2025.106028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a typical adhesive contact problem, a rigid sphere initially adhered to a relaxed viscoelastic substrate is pulled away from the substrate at finite speeds, and the pull-off force is often found to depend on the rate of pulling. Despite significant theoretical advancements in this area, how the apparent adhesion enhancement is affected by the Maugis parameter and preload remains unclear, and existing models are sometimes contentious. In this work, we revisit this adhesive contact problem and propose a theoretical model to predict the upper bound detachment behavior when the pulling speed approaches infinity. Our analysis reveals that the apparent work of adhesion can always be enhanced, regardless of the Maugis parameter, when the initial contact radius exceeds a critical threshold. Conversely, when the initial contact radius is below this critical value, the adhesion enhancement becomes limited and depends on both the Maugis parameter and the preload condition. Further model calculations suggest that the critical initial contact radius is dependent on the Maugis parameter. In the JKR-like regime, this critical radius converges to a constant value, whereas in the DMT-like regime, it diverges rapidly following an inverse power law with respect to the Maugis parameter. As a result, observing adhesion enhancement is generally more challenging in DMT-like contacts compared to JKR-like contacts. In the meantime, our model also suggests that the adhesion enhancement arises from the expansion of the cohesive zone area due to the viscoelastic properties of the material not only within the cohesive zone but also in the intimate contact zone. Overall, our findings offer a more comprehensive understanding of viscoelastic effects in adhesive contacts, which can be used to rationally predict or optimize adhesion strength in viscoelastic interfaces.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"196 \",\"pages\":\"Article 106028\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625000043\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000043","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于典型的粘接接触问题,最初粘附在松弛粘弹性基材上的刚性球体以有限的速度从基材上被拉离,而拉离力通常与拉离速率有关。尽管在这一领域取得了重大的理论进展,但表观粘附增强如何受到毛吉斯参数和预载荷的影响仍不清楚,现有模型有时存在争议。在这项工作中,我们重新审视了这种粘接接触问题,并提出了一个理论模型来预测当拉速接近无穷大时的上界脱离行为。我们的分析表明,无论毛吉斯参数如何,当初始接触半径超过临界阈值时,粘附的表观功总是可以增强的。相反,当初始接触半径低于该临界值时,粘附增强变得有限,并且取决于毛吉斯参数和预载荷条件。进一步的模型计算表明,临界初始接触半径取决于毛吉斯参数。在类似jkr的情况下,该临界半径收敛于一个常数,而在类似dmt的情况下,它根据毛吉参数的逆幂律迅速发散。因此,与类jkr接触相比,在类dmt接触中观察粘附增强通常更具挑战性。同时,我们的模型还表明,由于材料的粘弹性特性不仅在粘聚区内,而且在亲密接触区内,粘着力的增强是由粘聚区面积的扩大引起的。总的来说,我们的研究结果提供了对粘弹性接触中的粘弹性效应的更全面的理解,可用于合理预测或优化粘弹性界面的粘弹性强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid detachment of a rigid sphere adhered to a viscoelastic substrate: An upper bound model incorporating Maugis parameter and preload effects
For a typical adhesive contact problem, a rigid sphere initially adhered to a relaxed viscoelastic substrate is pulled away from the substrate at finite speeds, and the pull-off force is often found to depend on the rate of pulling. Despite significant theoretical advancements in this area, how the apparent adhesion enhancement is affected by the Maugis parameter and preload remains unclear, and existing models are sometimes contentious. In this work, we revisit this adhesive contact problem and propose a theoretical model to predict the upper bound detachment behavior when the pulling speed approaches infinity. Our analysis reveals that the apparent work of adhesion can always be enhanced, regardless of the Maugis parameter, when the initial contact radius exceeds a critical threshold. Conversely, when the initial contact radius is below this critical value, the adhesion enhancement becomes limited and depends on both the Maugis parameter and the preload condition. Further model calculations suggest that the critical initial contact radius is dependent on the Maugis parameter. In the JKR-like regime, this critical radius converges to a constant value, whereas in the DMT-like regime, it diverges rapidly following an inverse power law with respect to the Maugis parameter. As a result, observing adhesion enhancement is generally more challenging in DMT-like contacts compared to JKR-like contacts. In the meantime, our model also suggests that the adhesion enhancement arises from the expansion of the cohesive zone area due to the viscoelastic properties of the material not only within the cohesive zone but also in the intimate contact zone. Overall, our findings offer a more comprehensive understanding of viscoelastic effects in adhesive contacts, which can be used to rationally predict or optimize adhesion strength in viscoelastic interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
Inflation of a polydomain nematic elastomeric membrane Phase-augmented digital image correlation for high-accuracy deformation measurement: Theory, validation, and application to constitutive law learning Unusual stretching–twisting of liquid crystal elastomer bilayers Mechanics of liquid crystal inclusions in soft matrices Analysis of axisymmetric necking of a circular dielectric membrane based on a one-dimensional model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1