填补的差距LogP pKa评价饱和含氟衍生物和机器学习

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2025-01-13 DOI:10.1002/jcc.70002
Oleksandr Gurbych, Petro Pavliuk, Dmytro Krasnienkov, Oleksandr Liashuk, Kostiantyn Melnykov, Oleksandr O. Grygorenko
{"title":"填补的差距LogP pKa评价饱和含氟衍生物和机器学习","authors":"Oleksandr Gurbych,&nbsp;Petro Pavliuk,&nbsp;Dmytro Krasnienkov,&nbsp;Oleksandr Liashuk,&nbsp;Kostiantyn Melnykov,&nbsp;Oleksandr O. Grygorenko","doi":"10.1002/jcc.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by <span></span><math>\n <semantics>\n <mrow>\n <mtext>LogP</mtext>\n </mrow>\n <annotation>$$ LogP $$</annotation>\n </semantics></math> (1-octanol–water distribution coefficient logarithm), and acidity/basicity, measured by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>pK</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation>$$ {pK}_a $$</annotation>\n </semantics></math> (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard <span></span><math>\n <semantics>\n <mrow>\n <mtext>LogP</mtext>\n </mrow>\n <annotation>$$ LogP $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>pK</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation>$$ {pK}_a $$</annotation>\n </semantics></math> assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class. To overcome this challenge, we compiled a unique dataset of saturated fluorinated and corresponding non-fluorinated derivatives with <span></span><math>\n <semantics>\n <mrow>\n <mtext>LogP</mtext>\n </mrow>\n <annotation>$$ LogP $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>pK</mi>\n <mi>a</mi>\n </msub>\n </mrow>\n <annotation>$$ {pK}_a $$</annotation>\n </semantics></math> experimental values. Aiming to create an optimal approach to acidity/basicity and lipophilicity prediction, we evaluated, trained from scratch, or fine-tuned more than 40 machine learning models, including linear, tree-based, and neural networks. The study was supplemented with a substructure mask explanation (SME), which confirmed the critical role of the fluorinated substituents on both physicochemical properties studied and testified to the consistency of the developed models. The results were open-sourced as a GitHub repository, pip, conda packages, and a KNIME node, allowing the public to perform the targeted molecular design of the proposed class of compounds.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filling the Gap in \\n \\n \\n LogP\\n \\n $$ LogP $$\\n and \\n \\n \\n \\n pK\\n a\\n \\n \\n $$ {pK}_a $$\\n Evaluation for Saturated Fluorine-Containing Derivatives With Machine Learning\",\"authors\":\"Oleksandr Gurbych,&nbsp;Petro Pavliuk,&nbsp;Dmytro Krasnienkov,&nbsp;Oleksandr Liashuk,&nbsp;Kostiantyn Melnykov,&nbsp;Oleksandr O. Grygorenko\",\"doi\":\"10.1002/jcc.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>LogP</mtext>\\n </mrow>\\n <annotation>$$ LogP $$</annotation>\\n </semantics></math> (1-octanol–water distribution coefficient logarithm), and acidity/basicity, measured by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>pK</mi>\\n <mi>a</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {pK}_a $$</annotation>\\n </semantics></math> (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>LogP</mtext>\\n </mrow>\\n <annotation>$$ LogP $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>pK</mi>\\n <mi>a</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {pK}_a $$</annotation>\\n </semantics></math> assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class. To overcome this challenge, we compiled a unique dataset of saturated fluorinated and corresponding non-fluorinated derivatives with <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>LogP</mtext>\\n </mrow>\\n <annotation>$$ LogP $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>pK</mi>\\n <mi>a</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ {pK}_a $$</annotation>\\n </semantics></math> experimental values. Aiming to create an optimal approach to acidity/basicity and lipophilicity prediction, we evaluated, trained from scratch, or fine-tuned more than 40 machine learning models, including linear, tree-based, and neural networks. The study was supplemented with a substructure mask explanation (SME), which confirmed the critical role of the fluorinated substituents on both physicochemical properties studied and testified to the consistency of the developed models. The results were open-sourced as a GitHub repository, pip, conda packages, and a KNIME node, allowing the public to perform the targeted molecular design of the proposed class of compounds.</p>\\n </div>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70002\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

亲脂性和酸碱度是影响化合物药理活性、生物利用度、代谢和毒性的基本物理性质。通过LogP $$ LogP $$(1-辛醇-水分布系数对数)和pKa $$ {pK}_a $$(负的酸电离常数对数)来预测亲脂性和酸碱度,对于早期药物发现的成功至关重要。然而,饱和含氟衍生物的实验数据可用性有限,标准LogP $$ LogP $$和pKa $$ {pK}_a $$评估方法的准确性较差,这对获得令人满意的该类化合物结果构成了重大挑战。为了克服这一挑战,我们编制了具有LogP $$ LogP $$和pKa $$ {pK}_a $$实验值的饱和氟化和相应的非氟化衍生物的独特数据集。为了创建酸度/碱度和亲脂性预测的最佳方法,我们评估、从头开始训练或微调了40多种机器学习模型,包括线性、基于树的和神经网络。该研究还补充了一个子结构掩膜解释(SME),证实了氟化取代基对所研究的物理化学性质的关键作用,并证明了所开发模型的一致性。结果以GitHub存储库、pip、conda包和KNIME节点的形式开源,允许公众执行所提议的化合物类别的靶向分子设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filling the Gap in LogP $$ LogP $$ and pK a $$ {pK}_a $$ Evaluation for Saturated Fluorine-Containing Derivatives With Machine Learning

Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by LogP $$ LogP $$ (1-octanol–water distribution coefficient logarithm), and acidity/basicity, measured by pK a $$ {pK}_a $$ (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard LogP $$ LogP $$ and pK a $$ {pK}_a $$ assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class. To overcome this challenge, we compiled a unique dataset of saturated fluorinated and corresponding non-fluorinated derivatives with LogP $$ LogP $$ and pK a $$ {pK}_a $$ experimental values. Aiming to create an optimal approach to acidity/basicity and lipophilicity prediction, we evaluated, trained from scratch, or fine-tuned more than 40 machine learning models, including linear, tree-based, and neural networks. The study was supplemented with a substructure mask explanation (SME), which confirmed the critical role of the fluorinated substituents on both physicochemical properties studied and testified to the consistency of the developed models. The results were open-sourced as a GitHub repository, pip, conda packages, and a KNIME node, allowing the public to perform the targeted molecular design of the proposed class of compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information Theoretical Insights Into Structures and U–C Bonding in the Uranium Benzyl Derivatives Scaling of the GROMACS Molecular Dynamics Code to 65k CPU Cores on an HPC Cluster Mechanistic Study of the Carbonylation of Aziridines to β-Lactams: Alkylation, Solvent and Molecular NaBr and MgO Clusters Catalysts Effects Evaluation of Density-Functional Tight-Binding Methods for Simulation of Protic Molecular Ion Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1