基于kubernetes的容器化工作流资源高效分配方案

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2025-01-02 DOI:10.1016/j.future.2024.107699
Danyang Liu , Yuanqing Xia , Chenggang Shan , Ke Tian , Yufeng Zhan
{"title":"基于kubernetes的容器化工作流资源高效分配方案","authors":"Danyang Liu ,&nbsp;Yuanqing Xia ,&nbsp;Chenggang Shan ,&nbsp;Ke Tian ,&nbsp;Yufeng Zhan","doi":"10.1016/j.future.2024.107699","DOIUrl":null,"url":null,"abstract":"<div><div>In the cloud-native era, Kubernetes-based workflow engines simplify the execution of containerized workflows. However, these engines face challenges in dynamic environments with continuous workflow requests and unpredictable resource demand peaks. The traditional resource allocation approach, which relies merely on current workflow load data, also lacks flexibility and foresight, often leading to resource over-allocation or scarcity. To tackle these issues, we present a containerized workflow resource allocation (CWRA) scheme designed specifically for Kubernetes workflow engines. CWRA predicts future workflow tasks during the current task pod’s lifecycle and employs a dynamic resource scaling strategy to manage high concurrency scenarios effectively. This scheme includes resource discovery and allocation algorithm, which are essential components of our containerized workflow engine (CWE). Our experimental results, across various workflow arrival patterns, indicate significant improvements when compared to the Argo workflow engine. CWRA achieves a reduction in total workflow duration by 0.9% to 11.4%, decreases average workflow duration by a maximum of 21.5%, and increases CPU and memory utilization by 2.07% to 16.95%.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107699"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Kubernetes-based scheme for efficient resource allocation in containerized workflow\",\"authors\":\"Danyang Liu ,&nbsp;Yuanqing Xia ,&nbsp;Chenggang Shan ,&nbsp;Ke Tian ,&nbsp;Yufeng Zhan\",\"doi\":\"10.1016/j.future.2024.107699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the cloud-native era, Kubernetes-based workflow engines simplify the execution of containerized workflows. However, these engines face challenges in dynamic environments with continuous workflow requests and unpredictable resource demand peaks. The traditional resource allocation approach, which relies merely on current workflow load data, also lacks flexibility and foresight, often leading to resource over-allocation or scarcity. To tackle these issues, we present a containerized workflow resource allocation (CWRA) scheme designed specifically for Kubernetes workflow engines. CWRA predicts future workflow tasks during the current task pod’s lifecycle and employs a dynamic resource scaling strategy to manage high concurrency scenarios effectively. This scheme includes resource discovery and allocation algorithm, which are essential components of our containerized workflow engine (CWE). Our experimental results, across various workflow arrival patterns, indicate significant improvements when compared to the Argo workflow engine. CWRA achieves a reduction in total workflow duration by 0.9% to 11.4%, decreases average workflow duration by a maximum of 21.5%, and increases CPU and memory utilization by 2.07% to 16.95%.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"166 \",\"pages\":\"Article 107699\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24006630\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24006630","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在云原生时代,基于kubernetes的工作流引擎简化了容器化工作流的执行。然而,这些引擎在动态环境中面临着持续的工作流请求和不可预测的资源需求峰值的挑战。传统的资源分配方法仅依赖于当前工作流负载数据,缺乏灵活性和预见性,往往导致资源过度分配或稀缺。为了解决这些问题,我们提出了一个专门为Kubernetes工作流引擎设计的容器化工作流资源分配(CWRA)方案。CWRA在当前任务pod的生命周期内预测未来的工作流任务,并采用动态资源扩展策略来有效地管理高并发场景。该方案包括资源发现和分配算法,这是我们的容器化工作流引擎(CWE)的重要组成部分。我们的实验结果表明,在不同的工作流到达模式下,与Argo工作流引擎相比有了显著的改进。CWRA使总工作流持续时间减少0.9%至11.4%,使平均工作流持续时间最多减少21.5%,使CPU和内存利用率提高2.07%至16.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Kubernetes-based scheme for efficient resource allocation in containerized workflow
In the cloud-native era, Kubernetes-based workflow engines simplify the execution of containerized workflows. However, these engines face challenges in dynamic environments with continuous workflow requests and unpredictable resource demand peaks. The traditional resource allocation approach, which relies merely on current workflow load data, also lacks flexibility and foresight, often leading to resource over-allocation or scarcity. To tackle these issues, we present a containerized workflow resource allocation (CWRA) scheme designed specifically for Kubernetes workflow engines. CWRA predicts future workflow tasks during the current task pod’s lifecycle and employs a dynamic resource scaling strategy to manage high concurrency scenarios effectively. This scheme includes resource discovery and allocation algorithm, which are essential components of our containerized workflow engine (CWE). Our experimental results, across various workflow arrival patterns, indicate significant improvements when compared to the Argo workflow engine. CWRA achieves a reduction in total workflow duration by 0.9% to 11.4%, decreases average workflow duration by a maximum of 21.5%, and increases CPU and memory utilization by 2.07% to 16.95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Self-sovereign identity framework with user-friendly private key generation and rule table Accelerating complex graph queries by summary-based hybrid partitioning for discovering vulnerabilities of distribution equipment DNA: Dual-radio Dual-constraint Node Activation scheduling for energy-efficient data dissemination in IoT Blending lossy and lossless data compression methods to support health data streaming in smart cities Energy–time modelling of distributed multi-population genetic algorithms with dynamic workload in HPC clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1