CDK8介导的炎症微环境可加重骨关节炎的进展

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-01-12 DOI:10.1016/j.jare.2025.01.017
Zhongnan Lin, Yining Xu, Hongyi Jiang, Wen Zeng, Yuhan Wang, Liang Zhu, Chihao Lin, Chao Lou, Hanting Shen, Han Ye, Yean Gu, Huachen Yu, Xiaoyun Pan, Lin Zheng
{"title":"CDK8介导的炎症微环境可加重骨关节炎的进展","authors":"Zhongnan Lin, Yining Xu, Hongyi Jiang, Wen Zeng, Yuhan Wang, Liang Zhu, Chihao Lin, Chao Lou, Hanting Shen, Han Ye, Yean Gu, Huachen Yu, Xiaoyun Pan, Lin Zheng","doi":"10.1016/j.jare.2025.01.017","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood.<h3>Objectives</h3>This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved.<h3>Methods</h3>The effects of CDK8 silencing or overexpression will be assessed by measuring OA pathological markers through H&amp;E staining, immunoblotting, Western blot, qRT-PCR, immunofluorescence and ELISA. The DMM surgery mouse model will be used as the OA model, and the PAM and Von Frey tests will be employed to measure the pain threshold in mice. Luciferase and ChIP assays will be conducted to explore the transcriptional regulation and elongation mechanisms of CDK8.<h3>Result</h3>CDK8 influences OA advancement by being recruited to the SASP promoter region in cooperation with NF-κB, leading to the elongation phosphorylation of Rpb1 CTD within the context of NF-κB-induced gene specificity, thereby regulating SASP transcription. The SASP secreted by chondrocytes during this process promotes the inflammatory microenvironment in the joint and drives macrophage differentiation into osteoclasts, further worsening the severity of osteoarthritis.<h3>Conclusion</h3>The SASP secreted by chondrocytes during the OA process plays a crucial role in worsening the severity of the disease. Inhibiting CDK8 expression can decrease its secretion by downregulating the transcription levels of SASP, which are co-regulated by CDK8 and NF-κB. This could offer a new target for osteoarthritis treatment.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"13 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CDK8 mediated inflammatory microenvironment aggravates osteoarthritis progression\",\"authors\":\"Zhongnan Lin, Yining Xu, Hongyi Jiang, Wen Zeng, Yuhan Wang, Liang Zhu, Chihao Lin, Chao Lou, Hanting Shen, Han Ye, Yean Gu, Huachen Yu, Xiaoyun Pan, Lin Zheng\",\"doi\":\"10.1016/j.jare.2025.01.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Introduction</h3>Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood.<h3>Objectives</h3>This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved.<h3>Methods</h3>The effects of CDK8 silencing or overexpression will be assessed by measuring OA pathological markers through H&amp;E staining, immunoblotting, Western blot, qRT-PCR, immunofluorescence and ELISA. The DMM surgery mouse model will be used as the OA model, and the PAM and Von Frey tests will be employed to measure the pain threshold in mice. Luciferase and ChIP assays will be conducted to explore the transcriptional regulation and elongation mechanisms of CDK8.<h3>Result</h3>CDK8 influences OA advancement by being recruited to the SASP promoter region in cooperation with NF-κB, leading to the elongation phosphorylation of Rpb1 CTD within the context of NF-κB-induced gene specificity, thereby regulating SASP transcription. The SASP secreted by chondrocytes during this process promotes the inflammatory microenvironment in the joint and drives macrophage differentiation into osteoclasts, further worsening the severity of osteoarthritis.<h3>Conclusion</h3>The SASP secreted by chondrocytes during the OA process plays a crucial role in worsening the severity of the disease. Inhibiting CDK8 expression can decrease its secretion by downregulating the transcription levels of SASP, which are co-regulated by CDK8 and NF-κB. This could offer a new target for osteoarthritis treatment.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.01.017\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.017","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

细胞周期蛋白依赖性激酶8 (CDK8)是CDK家族成员,通过转录激活调节炎症过程的发展。CDK8在骨关节炎(OA)进展中的作用尚不清楚。本研究旨在探讨CDK8是否通过其转录调控功能,协同软骨细胞内NF-κB调控衰老相关分泌表型(senescence-associated secretory phenotype, SASP)基因的转录,从而加剧骨关节炎(osteoarthritis, OA)进展过程中的炎症微环境,并探讨其具体机制。方法采用H&;E染色、免疫印迹、Western印迹、qRT-PCR、免疫荧光和ELISA检测OA病理标志物,评价CDK8沉默或过表达的影响。OA模型采用DMM手术小鼠模型,采用PAM和Von Frey试验测量小鼠痛阈值。我们将通过荧光素酶和ChIP检测来探索CDK8的转录调控和延伸机制。结果cdk8通过与NF-κB协同募集到SASP启动子区,在NF-κB诱导的基因特异性背景下,导致Rpb1 CTD的伸长磷酸化,从而调控SASP转录,从而影响OA的进展。软骨细胞在此过程中分泌的SASP促进关节内炎症微环境,驱动巨噬细胞分化为破骨细胞,进一步加重骨关节炎的严重程度。结论骨性关节炎过程中软骨细胞分泌的SASP在加重骨性关节炎病情中起着至关重要的作用。抑制CDK8的表达可以通过下调SASP的转录水平来减少其分泌,而SASP的转录水平是由CDK8和NF-κB共同调控的。这可能为骨关节炎的治疗提供一个新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CDK8 mediated inflammatory microenvironment aggravates osteoarthritis progression

Introduction

Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood.

Objectives

This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved.

Methods

The effects of CDK8 silencing or overexpression will be assessed by measuring OA pathological markers through H&E staining, immunoblotting, Western blot, qRT-PCR, immunofluorescence and ELISA. The DMM surgery mouse model will be used as the OA model, and the PAM and Von Frey tests will be employed to measure the pain threshold in mice. Luciferase and ChIP assays will be conducted to explore the transcriptional regulation and elongation mechanisms of CDK8.

Result

CDK8 influences OA advancement by being recruited to the SASP promoter region in cooperation with NF-κB, leading to the elongation phosphorylation of Rpb1 CTD within the context of NF-κB-induced gene specificity, thereby regulating SASP transcription. The SASP secreted by chondrocytes during this process promotes the inflammatory microenvironment in the joint and drives macrophage differentiation into osteoclasts, further worsening the severity of osteoarthritis.

Conclusion

The SASP secreted by chondrocytes during the OA process plays a crucial role in worsening the severity of the disease. Inhibiting CDK8 expression can decrease its secretion by downregulating the transcription levels of SASP, which are co-regulated by CDK8 and NF-κB. This could offer a new target for osteoarthritis treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
Sp3 ameliorated experimental autoimmune encephalomyelitis by triggering Socs3 in Th17 cells Zn-doped CaP coating equips Ti implants with corrosion resistance, biomineralization, antibacterial and immunotolerant activities Autophagy activation within inflammatory microenvironment improved the therapeutic effect of MSC-Derived extracellular Vesicle in SLE Actl6a regulates autophagy via Sox2-dependent Atg5 and Atg7 expression to inhibit apoptosis in spinal cord injury The urinary eccDNA landscape in prostate cancer reveals associations with genome instability and vital roles in cancer progression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1