单细胞外囊泡纳米化通用协议 (SEVEN-UP):用于定量表征单个细胞外囊泡的可访问成像平台

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-13 DOI:10.1021/acs.analchem.4c04614
Andras Saftics, Benjamin Purnell, Balint Beres, S. Thompson, Nan Jiang, Ima Ghaeli, Carinna Lima, Brian Armstrong, Kendall Van Keuren-Jensen, Tijana Jovanovic-Talisman
{"title":"单细胞外囊泡纳米化通用协议 (SEVEN-UP):用于定量表征单个细胞外囊泡的可访问成像平台","authors":"Andras Saftics, Benjamin Purnell, Balint Beres, S. Thompson, Nan Jiang, Ima Ghaeli, Carinna Lima, Brian Armstrong, Kendall Van Keuren-Jensen, Tijana Jovanovic-Talisman","doi":"10.1021/acs.analchem.4c04614","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content. Recent advances in single EV methods have addressed some of these challenges by providing sensitive tools for assessing individual vesicles; one example is our recently developed Single Extracellular VEsicle Nanoscopy (SEVEN) approach. However, these tools are typically not universally available to the general research community, as they require highly specialized equipment. Here, we show how single EV studies may be democratized via a novel method that employs super-resolution radial fluctuations (SRRF) microscopy and advanced data analysis. SRRF is compatible with a wide range of microscopes and fluorophores. We herein quantified individual EVs by combining affinity isolation (analytical protocol based on SEVEN) with SRRF microscopy and new analysis algorithms supported by machine learning-based EV assessment. Using SEVEN, we first optimized the workflow and validated the data obtained on wide-field and total internal reflection fluorescence microscopes. We further demonstrated that our approach, which we call the SEVEN-Universal Protocol (SEVEN-UP), can robustly assess the number, size, and content of plasma and recombinant EVs. Finally, we used the platform to assess RNA in EVs from conditioned cell culture media. Using SYTO RNASelect dye, we found that 18% of EVs from HEK 293T cells appear to contain RNA; these EVs were significantly larger compared with the general EV population. Altogether, we developed an economical, multiparametric, single EV characterization approach for the research community.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"49 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Extracellular VEsicle Nanoscopy-Universal Protocol (SEVEN-UP): Accessible Imaging Platform for Quantitative Characterization of Single Extracellular Vesicles\",\"authors\":\"Andras Saftics, Benjamin Purnell, Balint Beres, S. Thompson, Nan Jiang, Ima Ghaeli, Carinna Lima, Brian Armstrong, Kendall Van Keuren-Jensen, Tijana Jovanovic-Talisman\",\"doi\":\"10.1021/acs.analchem.4c04614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content. Recent advances in single EV methods have addressed some of these challenges by providing sensitive tools for assessing individual vesicles; one example is our recently developed Single Extracellular VEsicle Nanoscopy (SEVEN) approach. However, these tools are typically not universally available to the general research community, as they require highly specialized equipment. Here, we show how single EV studies may be democratized via a novel method that employs super-resolution radial fluctuations (SRRF) microscopy and advanced data analysis. SRRF is compatible with a wide range of microscopes and fluorophores. We herein quantified individual EVs by combining affinity isolation (analytical protocol based on SEVEN) with SRRF microscopy and new analysis algorithms supported by machine learning-based EV assessment. Using SEVEN, we first optimized the workflow and validated the data obtained on wide-field and total internal reflection fluorescence microscopes. We further demonstrated that our approach, which we call the SEVEN-Universal Protocol (SEVEN-UP), can robustly assess the number, size, and content of plasma and recombinant EVs. Finally, we used the platform to assess RNA in EVs from conditioned cell culture media. Using SYTO RNASelect dye, we found that 18% of EVs from HEK 293T cells appear to contain RNA; these EVs were significantly larger compared with the general EV population. Altogether, we developed an economical, multiparametric, single EV characterization approach for the research community.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single Extracellular VEsicle Nanoscopy-Universal Protocol (SEVEN-UP): Accessible Imaging Platform for Quantitative Characterization of Single Extracellular Vesicles
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content. Recent advances in single EV methods have addressed some of these challenges by providing sensitive tools for assessing individual vesicles; one example is our recently developed Single Extracellular VEsicle Nanoscopy (SEVEN) approach. However, these tools are typically not universally available to the general research community, as they require highly specialized equipment. Here, we show how single EV studies may be democratized via a novel method that employs super-resolution radial fluctuations (SRRF) microscopy and advanced data analysis. SRRF is compatible with a wide range of microscopes and fluorophores. We herein quantified individual EVs by combining affinity isolation (analytical protocol based on SEVEN) with SRRF microscopy and new analysis algorithms supported by machine learning-based EV assessment. Using SEVEN, we first optimized the workflow and validated the data obtained on wide-field and total internal reflection fluorescence microscopes. We further demonstrated that our approach, which we call the SEVEN-Universal Protocol (SEVEN-UP), can robustly assess the number, size, and content of plasma and recombinant EVs. Finally, we used the platform to assess RNA in EVs from conditioned cell culture media. Using SYTO RNASelect dye, we found that 18% of EVs from HEK 293T cells appear to contain RNA; these EVs were significantly larger compared with the general EV population. Altogether, we developed an economical, multiparametric, single EV characterization approach for the research community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1