大型语言模型的安全和隐私挑战:调查

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2025-01-13 DOI:10.1145/3712001
Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu
{"title":"大型语言模型的安全和隐私挑战:调查","authors":"Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu","doi":"10.1145/3712001","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering. Nowadays, LLMs have become very popular tools in natural language processing (NLP) tasks, with the capability to analyze complicated linguistic patterns and provide relevant responses depending on the context. While offering significant advantages, these models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and personally identifiable information (PII) leakage attacks. This survey provides a thorough review of the security and privacy challenges of LLMs, along with the application-based risks in various domains, such as transportation, education, and healthcare. We assess the extent of LLM vulnerabilities, investigate emerging security and privacy attacks against LLMs, and review potential defense mechanisms. Additionally, the survey outlines existing research gaps and highlights future research directions.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"29 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security and Privacy Challenges of Large Language Models: A Survey\",\"authors\":\"Badhan Chandra Das, M. Hadi Amini, Yanzhao Wu\",\"doi\":\"10.1145/3712001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering. Nowadays, LLMs have become very popular tools in natural language processing (NLP) tasks, with the capability to analyze complicated linguistic patterns and provide relevant responses depending on the context. While offering significant advantages, these models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and personally identifiable information (PII) leakage attacks. This survey provides a thorough review of the security and privacy challenges of LLMs, along with the application-based risks in various domains, such as transportation, education, and healthcare. We assess the extent of LLM vulnerabilities, investigate emerging security and privacy attacks against LLMs, and review potential defense mechanisms. Additionally, the survey outlines existing research gaps and highlights future research directions.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3712001\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3712001","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)已经展示了非凡的能力,并在多个领域做出了贡献,例如生成和总结文本、语言翻译和问答。如今,llm已成为自然语言处理(NLP)任务中非常流行的工具,具有分析复杂语言模式并根据上下文提供相关响应的能力。虽然这些模型具有显著的优势,但也容易受到安全和隐私攻击,例如越狱攻击、数据中毒攻击和个人可识别信息(PII)泄漏攻击。本调查全面回顾了法学硕士面临的安全和隐私挑战,以及交通、教育和医疗保健等各个领域基于应用程序的风险。我们评估LLM漏洞的程度,调查针对LLM的新出现的安全和隐私攻击,并审查潜在的防御机制。此外,调查概述了现有的研究差距,并强调了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Security and Privacy Challenges of Large Language Models: A Survey
Large language models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering. Nowadays, LLMs have become very popular tools in natural language processing (NLP) tasks, with the capability to analyze complicated linguistic patterns and provide relevant responses depending on the context. While offering significant advantages, these models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and personally identifiable information (PII) leakage attacks. This survey provides a thorough review of the security and privacy challenges of LLMs, along with the application-based risks in various domains, such as transportation, education, and healthcare. We assess the extent of LLM vulnerabilities, investigate emerging security and privacy attacks against LLMs, and review potential defense mechanisms. Additionally, the survey outlines existing research gaps and highlights future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Deep Learning Based Image Aesthetic Quality Assessment- A Review AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways Deep Learning Library Testing: Definition, Methods and Challenges A Survey on Exploring Real and Virtual Social Network Rumors: State-of-the-Art and Research Challenges ENDEMIC: End-to-End Network Disruptions - Examining Middleboxes, Issues, and Countermeasures - A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1