可溶微阵列贴片结合棕榈油生物活性化合物制备pluronic胶束以提高特应性皮炎的疗效。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-03 Epub Date: 2025-01-13 DOI:10.1021/acs.molpharmaceut.4c00990
Khusnul Humayatul Jannah, Christopher Kosasi Ko, Felicia Virginia Thios, Jihan Nabilah Isma, Anugerah Yaumil Ramadhani Aziz, Andi Dian Permana
{"title":"可溶微阵列贴片结合棕榈油生物活性化合物制备pluronic胶束以提高特应性皮炎的疗效。","authors":"Khusnul Humayatul Jannah, Christopher Kosasi Ko, Felicia Virginia Thios, Jihan Nabilah Isma, Anugerah Yaumil Ramadhani Aziz, Andi Dian Permana","doi":"10.1021/acs.molpharmaceut.4c00990","DOIUrl":null,"url":null,"abstract":"<p><p>The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil (<i>Elaeis guineensis</i>) has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD. The MC was prepared using a direct dissolution method using Pluronic F68 and F127. The results showed that MC increased the solubility of TCF-TTE, which was further confirmed by an <i>in vitro</i> study where 90.23 ± 2.07% TCF and 4.56 ± 1.36% TTE were released compared to the unencapsulated TCF-TTE extract. Furthermore, CMC biopolymers and MC integrated into DMP-MC with polyvinylpyrrolidone (PVP) exhibited favorable physical properties, such as mechanical strength and penetration ability. DMP-MC also exhibited a better platform with lower permeation, indicating higher retention and increased localized effects on AD skin than cream-MC. Additionally, dermatokinetic profile parameters showed significant improvement. The mean residence time (MRT) parameter indicated that TCF-TTE was retained for longer times 19.28 ± 0.02 h and 20.68 ± 0.01 h. Moreover, an <i>in vivo</i> study revealed that DMP-MC could relieve AD symptoms more rapidly than oral doses and cream-MC, indicating that DMP-MC proved to be more efficient. Furthermore, DMP-MC showed no tissue destruction (granulation and fibrosis) in rats treated with DMP-MC on the seventh day. Therefore, this study successfully developed the MC formula in DMP-MC formulation using synthesized CMC, which could potentially improve AD's therapeutic efficacy.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"840-858"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Pluronic-Based Micelles from Palm Oil Bioactive Compounds Incorporated by a Dissolvable Microarray Patch to Enhance the Efficacy of Atopic Dermatitis Therapy.\",\"authors\":\"Khusnul Humayatul Jannah, Christopher Kosasi Ko, Felicia Virginia Thios, Jihan Nabilah Isma, Anugerah Yaumil Ramadhani Aziz, Andi Dian Permana\",\"doi\":\"10.1021/acs.molpharmaceut.4c00990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil (<i>Elaeis guineensis</i>) has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD. The MC was prepared using a direct dissolution method using Pluronic F68 and F127. The results showed that MC increased the solubility of TCF-TTE, which was further confirmed by an <i>in vitro</i> study where 90.23 ± 2.07% TCF and 4.56 ± 1.36% TTE were released compared to the unencapsulated TCF-TTE extract. Furthermore, CMC biopolymers and MC integrated into DMP-MC with polyvinylpyrrolidone (PVP) exhibited favorable physical properties, such as mechanical strength and penetration ability. DMP-MC also exhibited a better platform with lower permeation, indicating higher retention and increased localized effects on AD skin than cream-MC. Additionally, dermatokinetic profile parameters showed significant improvement. The mean residence time (MRT) parameter indicated that TCF-TTE was retained for longer times 19.28 ± 0.02 h and 20.68 ± 0.01 h. Moreover, an <i>in vivo</i> study revealed that DMP-MC could relieve AD symptoms more rapidly than oral doses and cream-MC, indicating that DMP-MC proved to be more efficient. Furthermore, DMP-MC showed no tissue destruction (granulation and fibrosis) in rats treated with DMP-MC on the seventh day. Therefore, this study successfully developed the MC formula in DMP-MC formulation using synthesized CMC, which could potentially improve AD's therapeutic efficacy.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"840-858\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00990\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00990","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

棕榈油(Elaeis guineensis)中维生素E的高含量,包括生育酚和生育三烯醇(TCF-TTE),使其成为特应性皮炎(AD)替代治疗的有希望的候选者。然而,TCF-TTE的溶解度有限,限制了其治疗效果。本研究利用棕榈空果束合成的羧甲基纤维素(CMC)制备了可溶解微阵列贴片胶束(DMP-MC),以优化其对AD的递送。采用Pluronic F68和F127直接溶出法制备MC。结果表明,MC提高了TCF-TTE的溶解度,与未包封的TCF-TTE提取物相比,体外释放TCF为90.23±2.07%,TTE为4.56±1.36%,进一步证实了这一点。此外,CMC生物聚合物和MC与聚乙烯吡罗烷酮(PVP)集成在DMP-MC中,表现出良好的物理性能,如机械强度和穿透能力。DMP-MC也表现出更好的平台,渗透性较低,表明与乳霜- mc相比,DMP-MC具有更高的保留率和更强的局部作用。此外,皮肤动力学参数也有显著改善。平均滞留时间(MRT)参数显示TCF-TTE滞留时间较长(19.28±0.02 h)和(20.68±0.01 h)。此外,体内研究显示,DMP-MC比口服剂量和乳霜- mc能更快地缓解AD症状,表明DMP-MC更有效。此外,DMP-MC治疗第7天大鼠未出现组织破坏(肉芽肿和纤维化)。因此,本研究利用合成CMC成功开发了DMP-MC配方中的MC配方,有望提高AD的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Pluronic-Based Micelles from Palm Oil Bioactive Compounds Incorporated by a Dissolvable Microarray Patch to Enhance the Efficacy of Atopic Dermatitis Therapy.

The high content of vitamin E, including tocopherols and tocotrienols (TCF-TTE), in palm oil (Elaeis guineensis) has made it a promising candidate for the alternative treatment of atopic dermatitis (AD). However, the limited solubility of TCF-TTE has restricted its therapeutic efficacy. In this study, pluronic-based micelles (MCs) encapsulating palm oil-derived TCF-TTE were formulated with dissolvable microarray patch-micelles (DMP-MC) using carboxymethyl cellulose (CMC) synthesized from empty fruit bunches of palm to optimize its delivery for AD. The MC was prepared using a direct dissolution method using Pluronic F68 and F127. The results showed that MC increased the solubility of TCF-TTE, which was further confirmed by an in vitro study where 90.23 ± 2.07% TCF and 4.56 ± 1.36% TTE were released compared to the unencapsulated TCF-TTE extract. Furthermore, CMC biopolymers and MC integrated into DMP-MC with polyvinylpyrrolidone (PVP) exhibited favorable physical properties, such as mechanical strength and penetration ability. DMP-MC also exhibited a better platform with lower permeation, indicating higher retention and increased localized effects on AD skin than cream-MC. Additionally, dermatokinetic profile parameters showed significant improvement. The mean residence time (MRT) parameter indicated that TCF-TTE was retained for longer times 19.28 ± 0.02 h and 20.68 ± 0.01 h. Moreover, an in vivo study revealed that DMP-MC could relieve AD symptoms more rapidly than oral doses and cream-MC, indicating that DMP-MC proved to be more efficient. Furthermore, DMP-MC showed no tissue destruction (granulation and fibrosis) in rats treated with DMP-MC on the seventh day. Therefore, this study successfully developed the MC formula in DMP-MC formulation using synthesized CMC, which could potentially improve AD's therapeutic efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Predicting Drug-Polymer Compatibility in Amorphous Solid Dispersions by MD Simulation: On the Trap of Solvation Free Energies. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application. Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1