Wenxin Ding , Chenyao He , Xin Liu , Chunlei Hou , Qi Wang , Tiantian Gong , Jiahao Yang , Jingling Shen , Zhiyan Shan , Ruizhen Sun
{"title":"Cnot4泛素化缺陷会损害小鼠胚胎干细胞的增殖和分化能力。","authors":"Wenxin Ding , Chenyao He , Xin Liu , Chunlei Hou , Qi Wang , Tiantian Gong , Jiahao Yang , Jingling Shen , Zhiyan Shan , Ruizhen Sun","doi":"10.1016/j.bbrc.2024.151260","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodevelopmental abnormalities are significant contributors to a variety of neurological disorders. Ubiquitination is essential for embryonic development and plays a pivotal role in neurodevelopment. Although Cnot4 possesses E3-ubiquitin ligase activity, its function in neurodevelopment and embryonic stem cells (ESCs) remains inadequately understood. This study examined the impact of Cnot4 ubiquitination-deficit in mouse ESCs using flow cytometry, CCK-8 assays, immunofluorescence, western blotting, RNA sequencing (RNA-seq), and intracellular Ca<sup>2+</sup> measurement. Findings demonstrated that the lack of ubiquitination in Cnot4 reduced ESC proliferation rates and facilitated ectodermal differentiation during spontaneous ESC differentiation. RNA-seq analysis identified that the differentially expressed genes were primarily linked to glucose metabolism and Ca<sup>2+</sup> signaling pathways. Additionally, results indicated that the ubiquitination-deficit in Cnot4 caused increased intracellular Ca<sup>2+</sup> levels in mESCs. These findings suggest that Cnot4 plays a critical role in the regulation of proliferation and differentiation of mESCs through ubiquitination, providing a basis for further exploration of its involvement in embryonic and neural development.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"Article 151260"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells\",\"authors\":\"Wenxin Ding , Chenyao He , Xin Liu , Chunlei Hou , Qi Wang , Tiantian Gong , Jiahao Yang , Jingling Shen , Zhiyan Shan , Ruizhen Sun\",\"doi\":\"10.1016/j.bbrc.2024.151260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurodevelopmental abnormalities are significant contributors to a variety of neurological disorders. Ubiquitination is essential for embryonic development and plays a pivotal role in neurodevelopment. Although Cnot4 possesses E3-ubiquitin ligase activity, its function in neurodevelopment and embryonic stem cells (ESCs) remains inadequately understood. This study examined the impact of Cnot4 ubiquitination-deficit in mouse ESCs using flow cytometry, CCK-8 assays, immunofluorescence, western blotting, RNA sequencing (RNA-seq), and intracellular Ca<sup>2+</sup> measurement. Findings demonstrated that the lack of ubiquitination in Cnot4 reduced ESC proliferation rates and facilitated ectodermal differentiation during spontaneous ESC differentiation. RNA-seq analysis identified that the differentially expressed genes were primarily linked to glucose metabolism and Ca<sup>2+</sup> signaling pathways. Additionally, results indicated that the ubiquitination-deficit in Cnot4 caused increased intracellular Ca<sup>2+</sup> levels in mESCs. These findings suggest that Cnot4 plays a critical role in the regulation of proliferation and differentiation of mESCs through ubiquitination, providing a basis for further exploration of its involvement in embryonic and neural development.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"747 \",\"pages\":\"Article 151260\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24017960\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24017960","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ubiquitination-deficit of Cnot4 impairs the capacity of proliferation and differentiation in mouse embryonic stem cells
Neurodevelopmental abnormalities are significant contributors to a variety of neurological disorders. Ubiquitination is essential for embryonic development and plays a pivotal role in neurodevelopment. Although Cnot4 possesses E3-ubiquitin ligase activity, its function in neurodevelopment and embryonic stem cells (ESCs) remains inadequately understood. This study examined the impact of Cnot4 ubiquitination-deficit in mouse ESCs using flow cytometry, CCK-8 assays, immunofluorescence, western blotting, RNA sequencing (RNA-seq), and intracellular Ca2+ measurement. Findings demonstrated that the lack of ubiquitination in Cnot4 reduced ESC proliferation rates and facilitated ectodermal differentiation during spontaneous ESC differentiation. RNA-seq analysis identified that the differentially expressed genes were primarily linked to glucose metabolism and Ca2+ signaling pathways. Additionally, results indicated that the ubiquitination-deficit in Cnot4 caused increased intracellular Ca2+ levels in mESCs. These findings suggest that Cnot4 plays a critical role in the regulation of proliferation and differentiation of mESCs through ubiquitination, providing a basis for further exploration of its involvement in embryonic and neural development.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics