一种高效的电催化原位过氧化氢生成技术,用于含氧压载水处理。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-25 Epub Date: 2025-01-11 DOI:10.1016/j.scitotenv.2025.178444
Zhiquan Yao, Wei Xiong, Yong Shi, Xinyong Li, Michael K H Leung
{"title":"一种高效的电催化原位过氧化氢生成技术,用于含氧压载水处理。","authors":"Zhiquan Yao, Wei Xiong, Yong Shi, Xinyong Li, Michael K H Leung","doi":"10.1016/j.scitotenv.2025.178444","DOIUrl":null,"url":null,"abstract":"<p><p>The in-situ electrochemical production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient H<sub>2</sub>O<sub>2</sub> generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in H<sub>2</sub>O<sub>2</sub> electrosynthesis. The carbon nanosheet electrocatalysts demonstrated high selectivity for H<sub>2</sub>O<sub>2</sub> production, reaching 90 % at 0.33 V vs. RHE under neutral conditions. Maximum yields were achieved at 2238 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> at -0.5 V in an H-type electrolysis cell and 3681 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> at a current density of 150 mA cm<sup>-2</sup> in a flow cell, with Faraday efficiencies exceeding 70 %. Notably, a continuous 9-hour electrosynthesis test produced a high cumulative H<sub>2</sub>O<sub>2</sub> concentration of 1.2 wt% at a current density of 100 mA cm<sup>-2</sup>, highlighting the stability and scalability of carbon nanosheets. The outstanding performance of carbon nanosheets is attributed to the abundant basal plane C-O-C group, which provide optimal *OOH binding energy and minimal overpotential. Additionally, the in-situ generated H<sub>2</sub>O<sub>2</sub> from the electrocatalytic system achieved complete sterilization within 60 min against Escherichia coli and several marine bacterial strains isolated from seawater. Furthermore, treatment of real seawater with H<sub>2</sub>O<sub>2</sub> significantly altered the bacterial population abundance at both the phylum and genus levels, highlighting its effectiveness in microbial control. This study presents a high-performance electrocatalytic system for ballast water treatment, offering both scalability and environmental sustainability.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178444"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.\",\"authors\":\"Zhiquan Yao, Wei Xiong, Yong Shi, Xinyong Li, Michael K H Leung\",\"doi\":\"10.1016/j.scitotenv.2025.178444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The in-situ electrochemical production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient H<sub>2</sub>O<sub>2</sub> generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in H<sub>2</sub>O<sub>2</sub> electrosynthesis. The carbon nanosheet electrocatalysts demonstrated high selectivity for H<sub>2</sub>O<sub>2</sub> production, reaching 90 % at 0.33 V vs. RHE under neutral conditions. Maximum yields were achieved at 2238 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> at -0.5 V in an H-type electrolysis cell and 3681 mmol g<sub>cat</sub><sup>-1</sup> h<sup>-1</sup> at a current density of 150 mA cm<sup>-2</sup> in a flow cell, with Faraday efficiencies exceeding 70 %. Notably, a continuous 9-hour electrosynthesis test produced a high cumulative H<sub>2</sub>O<sub>2</sub> concentration of 1.2 wt% at a current density of 100 mA cm<sup>-2</sup>, highlighting the stability and scalability of carbon nanosheets. The outstanding performance of carbon nanosheets is attributed to the abundant basal plane C-O-C group, which provide optimal *OOH binding energy and minimal overpotential. Additionally, the in-situ generated H<sub>2</sub>O<sub>2</sub> from the electrocatalytic system achieved complete sterilization within 60 min against Escherichia coli and several marine bacterial strains isolated from seawater. Furthermore, treatment of real seawater with H<sub>2</sub>O<sub>2</sub> significantly altered the bacterial population abundance at both the phylum and genus levels, highlighting its effectiveness in microbial control. This study presents a high-performance electrocatalytic system for ballast water treatment, offering both scalability and environmental sustainability.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"962 \",\"pages\":\"178444\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2025.178444\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178444","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

原位电化学生产过氧化氢(H2O2)为压载水处理提供了一种很有前途的方法。然而,需要进一步开发能够在海水环境中高效生成H2O2的电催化剂。在此,我们合成了富含氧官能团的二维片状多孔碳纳米片,在H2O2电合成中表现出优异的性能。在中性条件下,碳纳米片电催化剂对H2O2的选择性高,在0.33 V条件下达到90%。在h型电解池中,在-0.5 V电流下,产率为2238 mmol gcat-1 h-1,在流动池中,电流密度为150 mA cm-2时,产率为3681 mmol gcat-1 h-1,法拉第效率超过70%。值得注意的是,在电流密度为100 mA cm-2的情况下,连续9小时的电合成测试产生了1.2 wt%的高累积H2O2浓度,突出了碳纳米片的稳定性和可扩展性。碳纳米片的优异性能归功于丰富的基面C-O-C基团,它提供了最佳的*OOH结合能和最小的过电位。此外,电催化系统原位生成的H2O2在60分钟内对大肠杆菌和从海水中分离的几种海洋细菌菌株完全杀菌。此外,用H2O2处理真实海水显著改变了门和属水平的细菌种群丰度,突出了其在微生物控制方面的有效性。本研究提出了一种用于压载水处理的高性能电催化系统,具有可扩展性和环境可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

The in-situ electrochemical production of hydrogen peroxide (H2O2) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient H2O2 generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in H2O2 electrosynthesis. The carbon nanosheet electrocatalysts demonstrated high selectivity for H2O2 production, reaching 90 % at 0.33 V vs. RHE under neutral conditions. Maximum yields were achieved at 2238 mmol gcat-1 h-1 at -0.5 V in an H-type electrolysis cell and 3681 mmol gcat-1 h-1 at a current density of 150 mA cm-2 in a flow cell, with Faraday efficiencies exceeding 70 %. Notably, a continuous 9-hour electrosynthesis test produced a high cumulative H2O2 concentration of 1.2 wt% at a current density of 100 mA cm-2, highlighting the stability and scalability of carbon nanosheets. The outstanding performance of carbon nanosheets is attributed to the abundant basal plane C-O-C group, which provide optimal *OOH binding energy and minimal overpotential. Additionally, the in-situ generated H2O2 from the electrocatalytic system achieved complete sterilization within 60 min against Escherichia coli and several marine bacterial strains isolated from seawater. Furthermore, treatment of real seawater with H2O2 significantly altered the bacterial population abundance at both the phylum and genus levels, highlighting its effectiveness in microbial control. This study presents a high-performance electrocatalytic system for ballast water treatment, offering both scalability and environmental sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Development and in-vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Corrigendum to "Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring" [Sci. Total Environ. 788 (2021) 147792]. Modeling dissolved organic carbon export from water supply catchments in the northeastern United States. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. Assessing biochar's impact on greenhouse gas emissions, microbial biomass, and enzyme activities in agricultural soils through meta-analysis and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1