接触亚致死杀虫剂会干扰蜜蜂对已习得颜色的记忆。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-25 Epub Date: 2025-01-11 DOI:10.1016/j.scitotenv.2025.178460
Tuğçe Rükün, Neslim Ercan, Ece Canko, Bihter Avşar, Adrian G Dyer, Jair E Garcia, İbrahim Çakmak, Christopher Mayack
{"title":"接触亚致死杀虫剂会干扰蜜蜂对已习得颜色的记忆。","authors":"Tuğçe Rükün, Neslim Ercan, Ece Canko, Bihter Avşar, Adrian G Dyer, Jair E Garcia, İbrahim Çakmak, Christopher Mayack","doi":"10.1016/j.scitotenv.2025.178460","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD<sub>50</sub> value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178460"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.\",\"authors\":\"Tuğçe Rükün, Neslim Ercan, Ece Canko, Bihter Avşar, Adrian G Dyer, Jair E Garcia, İbrahim Çakmak, Christopher Mayack\",\"doi\":\"10.1016/j.scitotenv.2025.178460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD<sub>50</sub> value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"962 \",\"pages\":\"178460\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2025.178460\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178460","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管越来越多的证据表明,新烟碱类杀虫剂对蜜蜂的行为和生理可能产生有害的亚致死效应,并导致全球蜜蜂健康状况下降,但它们在世界各地的使用量仍在增加。虽然花的颜色被认为是觅食蜜蜂(Apis mellifera)最重要的信号之一,但在自然环境中,杀虫剂对颜色视觉和记忆的影响仍然未知。我们训练自由飞行的蜜蜂觅食者,将人工黄色花朵喂食器放在有6种不同花色的无气味人工花丛中,研究亚致死水平的吡虫啉是否会破坏喂食器黄色花朵与食物奖励之间的后天联系。我们发现,当剂量高于LD50值的4%时,觅食的蜜蜂不再优先访问花丛中的黄色花朵,相反,我们怀疑,它们会恢复到基线觅食偏好,完全失去对黄色的偏好。我们的蜜蜂颜色视觉模型表明,区分黄色和其他颜色应该是很容易的认知任务。农药暴露还导致Lop1、UVop和Blop基因表达显著增加,CaMKII和CREB基因表达显著降低。我们的研究结果表明,记忆丧失是解释蜜蜂觅食颜色偏好改变的最合理的机制。在蜜蜂中,色觉是高度保守的,对有效的授粉服务至关重要。因此,我们的研究结果对全球生态系统健康和农业服务具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward. We found that for doses higher than 4 % of LD50 value, the foraging honey bees no longer preferentially visited the yellow flowers within the flower patch and instead, we suspect, reverted back to baseline foraging preferences, with a complete loss of the yellow preference. Our honey bee colour vision modelling indicates that discriminating the yellow colour from the rest should have been easy cognitive task. Pesticide exposure also resulted in a significant increase in Lop1, UVop, and Blop, and a decrease in CaMKII and CREB gene expression. Our results suggest that memory loss is the most plausible mechanism to explain the alteration of bee foraging colour preference. Across bees, colour vision is highly conserved and is essential for efficient pollination services. Therefore, our findings have important implications for ecosystem health and agricultural services world-wide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Development and in-vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations. Corrigendum to "Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring" [Sci. Total Environ. 788 (2021) 147792]. Modeling dissolved organic carbon export from water supply catchments in the northeastern United States. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1