多种水蚤放牧对废水细菌群落的影响。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-25 Epub Date: 2025-01-11 DOI:10.1016/j.scitotenv.2024.178364
Nicolas Tromas, Eyerusalem Goitom, Tiffany Chin, Quoc Tuc Dinh, Sarah M Dorner, Ola S Khawasik, Melania E Cristescu, Jean-Baptiste Burnet
{"title":"多种水蚤放牧对废水细菌群落的影响。","authors":"Nicolas Tromas, Eyerusalem Goitom, Tiffany Chin, Quoc Tuc Dinh, Sarah M Dorner, Ola S Khawasik, Melania E Cristescu, Jean-Baptiste Burnet","doi":"10.1016/j.scitotenv.2024.178364","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems. In this study, we investigated the influence of three different Daphnia species on a wastewater bacterial community, including fecal indicator bacterium E. coli. Using a microcosm setup to simulate the discharge of untreated sewage into surface water, we conducted in-depth analysis of bacterial community dynamics through sequencing the 16S rRNA gene. Our results revealed significant changes in microbial diversity and composition following exposure to Daphnia grazing, with variations observed among the three Daphnia species. D. pulicaria exerted the most pronounced impact on microbial diversity, followed by D. middendorffiana and D. mendotae. A total of 90 taxa exhibited significantly reduced relative abundance in the presence of Daphnia, with Firmicutes phylum being the most affected. At genus level, bacteria typically associated with wastewater (e.g., Zoogloea and Arcobacter) and gut microbiome constituents (e.g., Prevotella and Akkermansia) were notably affected by Daphnia exposure. The influence of Daphnia on bacterial community composition was most pronounced for D. pulicaria, while D. middendorffiana and D. mendotae primarily impacted community structure. Furthermore, we demonstrated that the microbial response to Daphnia exposure is phylogenetically conserved, potentially reflecting a grazing resistance or grazer feeding trait. Our findings shed new light on the role of Daphnia in controlling bacterial communities in polluted water bodies and underscore its potential as biofilter in wastewater treatment and reuse contexts.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"962 ","pages":"178364"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of grazing by multiple Daphnia species on wastewater bacterial communities.\",\"authors\":\"Nicolas Tromas, Eyerusalem Goitom, Tiffany Chin, Quoc Tuc Dinh, Sarah M Dorner, Ola S Khawasik, Melania E Cristescu, Jean-Baptiste Burnet\",\"doi\":\"10.1016/j.scitotenv.2024.178364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems. In this study, we investigated the influence of three different Daphnia species on a wastewater bacterial community, including fecal indicator bacterium E. coli. Using a microcosm setup to simulate the discharge of untreated sewage into surface water, we conducted in-depth analysis of bacterial community dynamics through sequencing the 16S rRNA gene. Our results revealed significant changes in microbial diversity and composition following exposure to Daphnia grazing, with variations observed among the three Daphnia species. D. pulicaria exerted the most pronounced impact on microbial diversity, followed by D. middendorffiana and D. mendotae. A total of 90 taxa exhibited significantly reduced relative abundance in the presence of Daphnia, with Firmicutes phylum being the most affected. At genus level, bacteria typically associated with wastewater (e.g., Zoogloea and Arcobacter) and gut microbiome constituents (e.g., Prevotella and Akkermansia) were notably affected by Daphnia exposure. The influence of Daphnia on bacterial community composition was most pronounced for D. pulicaria, while D. middendorffiana and D. mendotae primarily impacted community structure. Furthermore, we demonstrated that the microbial response to Daphnia exposure is phylogenetically conserved, potentially reflecting a grazing resistance or grazer feeding trait. Our findings shed new light on the role of Daphnia in controlling bacterial communities in polluted water bodies and underscore its potential as biofilter in wastewater treatment and reuse contexts.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"962 \",\"pages\":\"178364\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.178364\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178364","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解粪便细菌群落的动态对于管理公共卫生风险和保护饮用水资源至关重要。尽管对非生物因素如何影响水中粪便微生物群落的生存进行了广泛的研究,但对高等生物(如广泛分布的食草动物水蚤)捕食的影响却关注较少。尽管如此,水蚤在调节天然水生生态系统中的细菌群落方面发挥着重要作用,最近的研究强调了水蚤作为生物过滤器在替代三级废水处理系统中的潜力。在这项研究中,我们研究了三种不同水蚤对废水细菌群落的影响,包括粪便指示菌大肠杆菌。采用微观模拟装置模拟未经处理的污水排入地表水,通过对16S rRNA基因进行测序,深入分析了细菌群落动态。结果表明,放牧后水蚤群落的微生物多样性和组成发生了显著变化,3种水蚤之间存在差异。对微生物多样性的影响最显著的是白头草,其次是密藤和门多花。在水蚤存在的情况下,共有90个类群的相对丰度显著降低,其中厚壁菌门受影响最大。在属水平上,通常与废水相关的细菌(如Zoogloea和Arcobacter)和肠道微生物组成分(如Prevotella和Akkermansia)明显受到水蚤暴露的影响。水蚤对水蛭群落组成的影响最为明显的是白斑d.p ulicaria,而对褐皮d.p endendorffiana和mendotae的影响主要。此外,我们证明了微生物对水蚤暴露的反应在系统发育上是保守的,可能反映了放牧抗性或食草动物的摄食特性。我们的研究结果揭示了水蚤在控制污染水体细菌群落中的作用,并强调了水蚤在废水处理和再利用方面作为生物过滤器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of grazing by multiple Daphnia species on wastewater bacterial communities.

Understanding the dynamics of fecal bacterial communities is crucial for managing public health risks and protecting drinking water resources. While extensive research exists on how abiotic factors influence the survival of fecal microbial communities in water, less attention has been paid to the impact of predation by higher organisms, such as the widely distributed grazer Daphnia. Nevertheless, Daphnia plays a significant role in regulating bacterial communities in natural aquatic ecosystems, and recent studies highlighted its potential as a biofilter in alternative tertiary wastewater treatment systems. In this study, we investigated the influence of three different Daphnia species on a wastewater bacterial community, including fecal indicator bacterium E. coli. Using a microcosm setup to simulate the discharge of untreated sewage into surface water, we conducted in-depth analysis of bacterial community dynamics through sequencing the 16S rRNA gene. Our results revealed significant changes in microbial diversity and composition following exposure to Daphnia grazing, with variations observed among the three Daphnia species. D. pulicaria exerted the most pronounced impact on microbial diversity, followed by D. middendorffiana and D. mendotae. A total of 90 taxa exhibited significantly reduced relative abundance in the presence of Daphnia, with Firmicutes phylum being the most affected. At genus level, bacteria typically associated with wastewater (e.g., Zoogloea and Arcobacter) and gut microbiome constituents (e.g., Prevotella and Akkermansia) were notably affected by Daphnia exposure. The influence of Daphnia on bacterial community composition was most pronounced for D. pulicaria, while D. middendorffiana and D. mendotae primarily impacted community structure. Furthermore, we demonstrated that the microbial response to Daphnia exposure is phylogenetically conserved, potentially reflecting a grazing resistance or grazer feeding trait. Our findings shed new light on the role of Daphnia in controlling bacterial communities in polluted water bodies and underscore its potential as biofilter in wastewater treatment and reuse contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Development and in-vitro assessment of novel oxygen-releasing feed additives to reduce enteric ruminant methane emissions. Corrigendum to "Maternal Zearalenone exposure impacted ovarian follicle formation and development of suckled offspring" [Sci. Total Environ. 788 (2021) 147792]. Modeling dissolved organic carbon export from water supply catchments in the northeastern United States. Tracing microplastics in marine fish: Ecological threats and human exposure in the Bay of Bengal. Assessing biochar's impact on greenhouse gas emissions, microbial biomass, and enzyme activities in agricultural soils through meta-analysis and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1