Qiaolei Zhu, Bingyu Zhao, Nairu Ji, Yunping Zhu, Xinyu Shi
{"title":"ORF14基因对修饰菌株黑色素表达、发酵条件及产黑素特性的影响","authors":"Qiaolei Zhu, Bingyu Zhao, Nairu Ji, Yunping Zhu, Xinyu Shi","doi":"10.1016/j.jbiotec.2025.01.001","DOIUrl":null,"url":null,"abstract":"<p><p>Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220 nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway. In order to further enhance production of melanin, PlackettBurman and response surface methodology statistical design was employed to screen for key factors and determine the optimal combination. The maximum melanin production (4.00 g/L) was obtained under the conditions: amylodextrine concentration of 40 g/L, soya peptone concentration of 7 g/L, tryptone concentration of 5 g/L, NaCl concentration of 5.4 g/L, pH of 6.7 and temperature of 36 °C for 180 h. The physicochemical properties and bioactivity of melanin were further investigated, revealing that melanin had a good stability across a pH range of 4-12, antioxidant (with a survival rate of over 85 %), and resistance to reducing agents (with a survival rate of over 99 %). The results underscored that S. vilmorinianum YP1 is a promising candidate for water-soluble melanin production.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"224-234"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of ORF14 gene on melanin expression, fermentation conditions and properties of melanin production in modified strains.\",\"authors\":\"Qiaolei Zhu, Bingyu Zhao, Nairu Ji, Yunping Zhu, Xinyu Shi\",\"doi\":\"10.1016/j.jbiotec.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220 nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway. In order to further enhance production of melanin, PlackettBurman and response surface methodology statistical design was employed to screen for key factors and determine the optimal combination. The maximum melanin production (4.00 g/L) was obtained under the conditions: amylodextrine concentration of 40 g/L, soya peptone concentration of 7 g/L, tryptone concentration of 5 g/L, NaCl concentration of 5.4 g/L, pH of 6.7 and temperature of 36 °C for 180 h. The physicochemical properties and bioactivity of melanin were further investigated, revealing that melanin had a good stability across a pH range of 4-12, antioxidant (with a survival rate of over 85 %), and resistance to reducing agents (with a survival rate of over 99 %). The results underscored that S. vilmorinianum YP1 is a promising candidate for water-soluble melanin production.</p>\",\"PeriodicalId\":15153,\"journal\":{\"name\":\"Journal of biotechnology\",\"volume\":\" \",\"pages\":\"224-234\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiotec.2025.01.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2025.01.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effects of ORF14 gene on melanin expression, fermentation conditions and properties of melanin production in modified strains.
Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220 nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway. In order to further enhance production of melanin, PlackettBurman and response surface methodology statistical design was employed to screen for key factors and determine the optimal combination. The maximum melanin production (4.00 g/L) was obtained under the conditions: amylodextrine concentration of 40 g/L, soya peptone concentration of 7 g/L, tryptone concentration of 5 g/L, NaCl concentration of 5.4 g/L, pH of 6.7 and temperature of 36 °C for 180 h. The physicochemical properties and bioactivity of melanin were further investigated, revealing that melanin had a good stability across a pH range of 4-12, antioxidant (with a survival rate of over 85 %), and resistance to reducing agents (with a survival rate of over 99 %). The results underscored that S. vilmorinianum YP1 is a promising candidate for water-soluble melanin production.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.