{"title":"了解选择性背根切断术后肌肉能量消耗的变化,同时保持一致的能量消耗。","authors":"Emiliano Pablo Ravera , Adam Rozumalski","doi":"10.1016/j.jbiomech.2025.112497","DOIUrl":null,"url":null,"abstract":"<div><div>Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.</div><div>The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.</div><div>Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"Article 112497"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding muscle energy expenditure variations following selective dorsal rhizotomy while maintaining consistent energy consumption\",\"authors\":\"Emiliano Pablo Ravera , Adam Rozumalski\",\"doi\":\"10.1016/j.jbiomech.2025.112497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.</div><div>The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.</div><div>Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"180 \",\"pages\":\"Article 112497\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025000077\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Understanding muscle energy expenditure variations following selective dorsal rhizotomy while maintaining consistent energy consumption
Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.
The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.
Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.