了解选择性背根切断术后肌肉能量消耗的变化,同时保持一致的能量消耗。

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2025-02-01 DOI:10.1016/j.jbiomech.2025.112497
Emiliano Pablo Ravera , Adam Rozumalski
{"title":"了解选择性背根切断术后肌肉能量消耗的变化,同时保持一致的能量消耗。","authors":"Emiliano Pablo Ravera ,&nbsp;Adam Rozumalski","doi":"10.1016/j.jbiomech.2025.112497","DOIUrl":null,"url":null,"abstract":"<div><div>Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.</div><div>The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.</div><div>Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"Article 112497"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding muscle energy expenditure variations following selective dorsal rhizotomy while maintaining consistent energy consumption\",\"authors\":\"Emiliano Pablo Ravera ,&nbsp;Adam Rozumalski\",\"doi\":\"10.1016/j.jbiomech.2025.112497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.</div><div>The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.</div><div>Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"180 \",\"pages\":\"Article 112497\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025000077\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

行走时能量需求增加是脑瘫(CP)患儿反复出现的问题。鉴于这些儿童痉挛的高发生率,一些作者分析了选择性背根切断术(SDR)对行走时能量消耗的影响,SDR后通常显示出最小的变化。为了进一步研究SDR后的肌肉行为,我们最近的研究发现,在步行过程中,个体肌肉力量产生的改变没有改变肌肉激活。这表明CP患儿在SDR后可能会经历更有利的动态情景,以发展亚最大肌肉力量,因为减少了痉挛解锁关节运动。因此,这就提出了一个问题,即肌肉力量产生的这些变化是否会导致肌肉能量消耗的增加,这可能没有完全反映在总体能量消耗中。本研究的目的是在我们之前对SDR后肌肉行为的研究的基础上,通过使用神经-肌肉骨骼模拟来评估手术对行走过程中个体肌肉能量消耗的影响。我们的研究比较了两组相匹配的81名CP患儿:一组接受SDR治疗,另一组未接受SDR治疗。我们的结果显示,两组手术后的总能量消耗或总肌肉能量消耗没有显著变化。然而,与接受其他治疗的CP儿童相比,我们观察到SDR组行走时个体肌肉能量消耗的变化。与我们的第一项研究结果相比,我们观察到跖屈肌痉挛明显减少,踝关节角度改善,行走时个体肌肉力量增加,sdr后腓肠肌和比目鱼肌的能量消耗没有统计学上的显著变化。这些发现,加上sdr后肌肉活动没有变化,支持了肌肉组织改变导致CP患儿行走时能量不足的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding muscle energy expenditure variations following selective dorsal rhizotomy while maintaining consistent energy consumption
Increased energy demands during walking is a recurrent issue for children with cerebral palsy (CP). Given the high incidence of spasticity in these children, several authors have analyzed the impact of selective dorsal rhizotomy (SDR) on energy consumption during walking, typically showing minimal changes post-SDR. To further investigate muscle behavior after SDR, our recent study identified alterations in individual muscle force production without changes in muscle activation during walking. This suggests that children with CP may experience a more favorable dynamic scenario for developing sub-maximal muscle forces after SDR, due to reduced spasticity unlocking joint movement. Thus, this raises questions about whether these changes in muscle force production could lead to increased muscle energy expenditure, which may not be fully reflected in overall energy consumption.
The aim of this study was to build upon our previous research on muscle behavior after SDR by evaluating the surgery’s impact on individual muscle energy expenditure during walking, using neuro-musculoskeletal simulations. Our research compared two matched groups comprising 81 children with CP: those who underwent SDR and those who did not.
Our results showed no significant changes in overall energy consumption or total muscle energy expenditure in either group post-surgery. However, we observed alterations in individual muscle energy expenditure during walking in the SDR group compared to children with CP who received other treatments. Compared to the findings from our first study, we observed a significant decrease in spasticity of the plantarflexor muscles, an improvement in ankle joint angle, an increase in individual muscle force during walking, and no statistically significant changes in energy expenditure of the gastrocnemius and soleus muscles post-SDR. These findings, along with the absence of changes in muscle activity post-SDR, support the hypothesis that muscle tissue alterations contribute to energy deficits observed in children with CP during walking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Editorial Board Adding secondary cognitive tasks to drop vertical jumps alters the landing mechanics of athletes with anterior cruciate ligament reconstruction Comparison of shank, rearfoot and forefoot coordination and its variability between runners with different strike patterns Vastus lateralis muscle architecture, quality, and stiffness are determinants of maximal performance in athletes? 1D Network computational fluid dynamics for evaluating regional pressures in subjects with cement dust exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1