Yuanqing Zhang, Jie Wang, Tianran Huai, Xia Wang, Qiang Liu, Yan Xing, Maryam Chudnary, Xianli Meng, Liang Dong, Anna Malashicheva, Jinghui Tian, Ju Liu
{"title":"镉通过激活Notch信号通路降低内皮细胞VE-Cadherin的表达。","authors":"Yuanqing Zhang, Jie Wang, Tianran Huai, Xia Wang, Qiang Liu, Yan Xing, Maryam Chudnary, Xianli Meng, Liang Dong, Anna Malashicheva, Jinghui Tian, Ju Liu","doi":"10.1002/jbt.70115","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood. Notch signaling pathway abnormalities have been implicated in ECs disruption. The present study aims to investigate the effect of low Cd concentrations on the Notch signaling pathway in ECs. Mice were treated with low concentration of Cd (2.28 mg/kg), and tissues were collected for examination of mRNA and protein levels of Notch pathway components and VE-cadherin, a major junctional protein in ECs. We found that Cd treatment increases expression of NICD1, Hes1, Hey1, Hey2 and decreases expression of VE-cadherin in brain and kidney tissues. In vitro, a low concentration of Cd (1 μM) also induces increase expression of NICD1, Hes1, Hey1, Hey2, and decrease expression of VE-cadherin in human umbilical vein endothelial cells (HUVECs). Low concentration of Cd increased the permeability of HUVECs. We also found that Notch signaling negatively regulates the expression of VE-cadherin. In addition, DAPT, a Notch pathway inhibitor, prevents Cd-induced reduction in VE-cadherin expression in HUVECs. In summary, these findings revealed that Cd exposure decreases VE-cadherin expression through activation of the Notch signaling pathway.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium Reduces VE-Cadherin Expression in Endothelial Cells Through Activation of the Notch Signaling Pathway\",\"authors\":\"Yuanqing Zhang, Jie Wang, Tianran Huai, Xia Wang, Qiang Liu, Yan Xing, Maryam Chudnary, Xianli Meng, Liang Dong, Anna Malashicheva, Jinghui Tian, Ju Liu\",\"doi\":\"10.1002/jbt.70115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood. Notch signaling pathway abnormalities have been implicated in ECs disruption. The present study aims to investigate the effect of low Cd concentrations on the Notch signaling pathway in ECs. Mice were treated with low concentration of Cd (2.28 mg/kg), and tissues were collected for examination of mRNA and protein levels of Notch pathway components and VE-cadherin, a major junctional protein in ECs. We found that Cd treatment increases expression of NICD1, Hes1, Hey1, Hey2 and decreases expression of VE-cadherin in brain and kidney tissues. In vitro, a low concentration of Cd (1 μM) also induces increase expression of NICD1, Hes1, Hey1, Hey2, and decrease expression of VE-cadherin in human umbilical vein endothelial cells (HUVECs). Low concentration of Cd increased the permeability of HUVECs. We also found that Notch signaling negatively regulates the expression of VE-cadherin. In addition, DAPT, a Notch pathway inhibitor, prevents Cd-induced reduction in VE-cadherin expression in HUVECs. In summary, these findings revealed that Cd exposure decreases VE-cadherin expression through activation of the Notch signaling pathway.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70115\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cadmium Reduces VE-Cadherin Expression in Endothelial Cells Through Activation of the Notch Signaling Pathway
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood. Notch signaling pathway abnormalities have been implicated in ECs disruption. The present study aims to investigate the effect of low Cd concentrations on the Notch signaling pathway in ECs. Mice were treated with low concentration of Cd (2.28 mg/kg), and tissues were collected for examination of mRNA and protein levels of Notch pathway components and VE-cadherin, a major junctional protein in ECs. We found that Cd treatment increases expression of NICD1, Hes1, Hey1, Hey2 and decreases expression of VE-cadherin in brain and kidney tissues. In vitro, a low concentration of Cd (1 μM) also induces increase expression of NICD1, Hes1, Hey1, Hey2, and decrease expression of VE-cadherin in human umbilical vein endothelial cells (HUVECs). Low concentration of Cd increased the permeability of HUVECs. We also found that Notch signaling negatively regulates the expression of VE-cadherin. In addition, DAPT, a Notch pathway inhibitor, prevents Cd-induced reduction in VE-cadherin expression in HUVECs. In summary, these findings revealed that Cd exposure decreases VE-cadherin expression through activation of the Notch signaling pathway.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.