IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2025-01-07 DOI:10.1016/j.marenvres.2025.106956
Lingyun Zhao, Huawei Qin, Mingliang Zhang, Rongyu Xin, Jichen Liu, Mengjie Wang, Yaoyang Ma
{"title":"Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon.","authors":"Lingyun Zhao, Huawei Qin, Mingliang Zhang, Rongyu Xin, Jichen Liu, Mengjie Wang, Yaoyang Ma","doi":"10.1016/j.marenvres.2025.106956","DOIUrl":null,"url":null,"abstract":"<p><p>The input of macroalgal biomass into the deep sea is a crucial process for macroalgal carbon sequestration, but this process may be affected by anoxia. We compared the breakdown of kelp biomass in both normoxic (>4 mg/L O<sub>2</sub>) and anoxic (<2 mg/L O<sub>2</sub>) environments. Following 240 days of decomposition experiment, complete degradation of the kelp biomass occurred in normoxic conditions, whereas under anoxic conditions, relatively 13.58% residual biomass remained. Our results suggest that microorganisms facilitated the conversion of dissolved organic carbon (DOC) derived from kelp degradation into refractory dissolved organic carbon (RDOC), a process observed under both normoxic and anoxic conditions. However, different dissolved oxygen levels lead to different bacterial community successions, which affected the conversion process from labile dissolved organic carbon (LDOC) to RDOC differently. Bacteroidia, which possess sulfur metabolic capabilities, play a significant role in RDOC generation under both normoxic and anoxic conditions. In normoxic conditions, the relative abundance of CHO molecules was 2.57% less than that under anoxic conditions, whereas the proportions of CHON was 3.83% higher. Additionally, DBE<sub>wa</sub> and Almod<sub>wa</sub> values were 11.04% and 15.63% higher than those observed under anoxic conditions. At the end of the experiment, the relative content of RDOC under normoxic and anoxic conditions was 9.18% and 5.45%, respectively. Despite the reduced production of RDOC, anoxic conditions promote the preservation of a larger amount of macroalgae biomass. However, uncertainty exists regarding the extent to which stored POC reaches deep-sea sequestration. Consequently, it is challenging to assert that anoxia positively influences carbon sequestration in macroalgae.</p>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"204 ","pages":"106956"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.marenvres.2025.106956","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大型藻类生物量输入深海是大型藻类固碳的关键过程,但这一过程可能会受到缺氧的影响。我们比较了海带生物量在常氧(>4 mg/L O2)和缺氧(2)环境下的分解情况。经过 240 天的分解实验,海带生物量在常氧条件下完全降解,而在缺氧条件下,残余生物量仅为 13.58%。我们的研究结果表明,微生物促进了海带降解产生的溶解有机碳(DOC)向难溶解有机碳(RDOC)的转化,这一过程在常氧和缺氧条件下均可观察到。然而,不同的溶解氧水平会导致不同的细菌群落演替,从而对可溶性溶解有机碳(LDOC)到 RDOC 的转化过程产生不同的影响。在常氧和缺氧条件下,具有硫代谢能力的类杆菌在 RDOC 生成过程中都发挥了重要作用。在常氧条件下,CHO 分子的相对丰度比缺氧条件下低 2.57%,而 CHON 的比例则高出 3.83%。此外,DBEwa 和 Almodwa 值比缺氧条件下分别高出 11.04% 和 15.63%。实验结束时,常氧和缺氧条件下 RDOC 的相对含量分别为 9.18% 和 5.45%。尽管减少了 RDOC 的产生,但缺氧条件促进了大量大型藻类生物量的保存。不过,储存的 POC 能在多大程度上进入深海封存还存在不确定性。因此,断言缺氧会对大型藻类的碳封存产生积极影响具有挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon.

The input of macroalgal biomass into the deep sea is a crucial process for macroalgal carbon sequestration, but this process may be affected by anoxia. We compared the breakdown of kelp biomass in both normoxic (>4 mg/L O2) and anoxic (<2 mg/L O2) environments. Following 240 days of decomposition experiment, complete degradation of the kelp biomass occurred in normoxic conditions, whereas under anoxic conditions, relatively 13.58% residual biomass remained. Our results suggest that microorganisms facilitated the conversion of dissolved organic carbon (DOC) derived from kelp degradation into refractory dissolved organic carbon (RDOC), a process observed under both normoxic and anoxic conditions. However, different dissolved oxygen levels lead to different bacterial community successions, which affected the conversion process from labile dissolved organic carbon (LDOC) to RDOC differently. Bacteroidia, which possess sulfur metabolic capabilities, play a significant role in RDOC generation under both normoxic and anoxic conditions. In normoxic conditions, the relative abundance of CHO molecules was 2.57% less than that under anoxic conditions, whereas the proportions of CHON was 3.83% higher. Additionally, DBEwa and Almodwa values were 11.04% and 15.63% higher than those observed under anoxic conditions. At the end of the experiment, the relative content of RDOC under normoxic and anoxic conditions was 9.18% and 5.45%, respectively. Despite the reduced production of RDOC, anoxic conditions promote the preservation of a larger amount of macroalgae biomass. However, uncertainty exists regarding the extent to which stored POC reaches deep-sea sequestration. Consequently, it is challenging to assert that anoxia positively influences carbon sequestration in macroalgae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Corrigendum to "Long-term warming and acidification interaction drives plastic acclimation in the diatom Pseudo-nitzschia multiseries" [Mar. Environ. Res. 204 (2025) 106901]. Effect of marine anoxia on the conversion of macroalgal biomass to refractory dissolved organic carbon. Gradient experiment reveals physiological stress from heavy metal zinc on the economically valuable seaweed Sargassum fusiforme. Microscale intertidal habitats modulate shell break resistance of the prey; Implications for prey selection. Multi-interacting global-change drivers reduce photosynthetic and resource use efficiencies and prompt a microzooplankton-phytoplankton uncoupling in estuarine communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1