利用自然语言处理技术识别癫痫状态的儿科患者。

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY Seizure-European Journal of Epilepsy Pub Date : 2025-02-01 DOI:10.1016/j.seizure.2025.01.008
Molly Ann Puckett , Fatemeh Mohammad Alizadeh Chafjiri , Jennifer V. Gettings , Assaf Landschaft , Tobias Loddenkemper
{"title":"利用自然语言处理技术识别癫痫状态的儿科患者。","authors":"Molly Ann Puckett ,&nbsp;Fatemeh Mohammad Alizadeh Chafjiri ,&nbsp;Jennifer V. Gettings ,&nbsp;Assaf Landschaft ,&nbsp;Tobias Loddenkemper","doi":"10.1016/j.seizure.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.</div></div><div><h3>Methods</h3><div>We reviewed EHRs of patients aged 1 month to 21 years from Boston Children's Hospital (BCH). We included all patients with convulsive ESE or RSE during admission. We employed and validated a pre-trained NLP tool, Document review Tool (DrT), to identify patients from 2013–2020, excluding training years (2017–2019). DrT notes a machine-learning score based on a support vector machine (SVM) and bag-of-n-grams. Higher scores indicated more likely ESE/RSE cases. To further evaluate the effectiveness of DrT-assisted review, we compared the results to human-reviewed notes from the pediatric Status Epilepticus Research Group (pSERG) consortium at BCH.</div></div><div><h3>Results</h3><div>The pre-trained algorithm identified 170 patients with RSE using DrT (Sensitivity: 98.8%), compared to 116 patients identified during human review (Sensitivity: 67.4%). Additionally, we identified 207 patients with ESE using DrT (Sensitivity: 99.5%), compared to 91 patients identified using human review (Sensitivity: 43.8%). Overall, DrT missed 3 cases (2 RSE and 1 ESE cases) that were identified during human review and identified 173 cases (56 RSE and 117 ESE cases) that were not found during the human review.</div></div><div><h3>Conclusion</h3><div>DrT-assisted manual review demonstrated higher sensitivity in identifying patients with ESE and RSE than the current standard of human review. This suggests that in contexts characterized by resource constraints NLP-related software like DrT can considerably enhance patient identification for research studies, treatment protocols, and preventative care interventions.</div></div>","PeriodicalId":49552,"journal":{"name":"Seizure-European Journal of Epilepsy","volume":"125 ","pages":"Pages 54-61"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing natural language processing to identify pediatric patients experiencing status epilepticus\",\"authors\":\"Molly Ann Puckett ,&nbsp;Fatemeh Mohammad Alizadeh Chafjiri ,&nbsp;Jennifer V. Gettings ,&nbsp;Assaf Landschaft ,&nbsp;Tobias Loddenkemper\",\"doi\":\"10.1016/j.seizure.2025.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.</div></div><div><h3>Methods</h3><div>We reviewed EHRs of patients aged 1 month to 21 years from Boston Children's Hospital (BCH). We included all patients with convulsive ESE or RSE during admission. We employed and validated a pre-trained NLP tool, Document review Tool (DrT), to identify patients from 2013–2020, excluding training years (2017–2019). DrT notes a machine-learning score based on a support vector machine (SVM) and bag-of-n-grams. Higher scores indicated more likely ESE/RSE cases. To further evaluate the effectiveness of DrT-assisted review, we compared the results to human-reviewed notes from the pediatric Status Epilepticus Research Group (pSERG) consortium at BCH.</div></div><div><h3>Results</h3><div>The pre-trained algorithm identified 170 patients with RSE using DrT (Sensitivity: 98.8%), compared to 116 patients identified during human review (Sensitivity: 67.4%). Additionally, we identified 207 patients with ESE using DrT (Sensitivity: 99.5%), compared to 91 patients identified using human review (Sensitivity: 43.8%). Overall, DrT missed 3 cases (2 RSE and 1 ESE cases) that were identified during human review and identified 173 cases (56 RSE and 117 ESE cases) that were not found during the human review.</div></div><div><h3>Conclusion</h3><div>DrT-assisted manual review demonstrated higher sensitivity in identifying patients with ESE and RSE than the current standard of human review. This suggests that in contexts characterized by resource constraints NLP-related software like DrT can considerably enhance patient identification for research studies, treatment protocols, and preventative care interventions.</div></div>\",\"PeriodicalId\":49552,\"journal\":{\"name\":\"Seizure-European Journal of Epilepsy\",\"volume\":\"125 \",\"pages\":\"Pages 54-61\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seizure-European Journal of Epilepsy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1059131125000093\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seizure-European Journal of Epilepsy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1059131125000093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:比较人工回顾与自然语言处理(NLP)辅助回顾对电子健康记录(EHR)中确定的癫痫持续状态(ESE)和难治性癫痫持续状态(RSE)患者的识别。方法:我们回顾了波士顿儿童医院(BCH) 1个月至21岁患者的电子病历。我们纳入了入院时所有惊厥性ESE或RSE患者。我们使用并验证了一种预训练的NLP工具——文档审查工具(DrT),以识别2013-2020年(不包括2017-2019年)的患者。DrT记录了一个基于支持向量机(SVM)和n-grams袋的机器学习分数。得分越高,越有可能出现ESE/RSE病例。为了进一步评估drt辅助审查的有效性,我们将结果与BCH儿童癫痫持续状态研究组(pSERG)联盟的人类审查笔记进行了比较。结果:预先训练的算法使用DrT识别出170例RSE患者(灵敏度:98.8%),相比之下,在人类审查中识别出116例患者(灵敏度:67.4%)。此外,我们使用DrT识别了207例ESE患者(敏感性:99.5%),相比之下,使用人类回顾识别了91例患者(敏感性:43.8%)。总的来说,DrT遗漏了3例(2例RSE和1例ESE),这些病例是在人类审查中发现的,而在人类审查中没有发现173例(56例RSE和117例ESE)。结论:drt辅助人工评价在识别ESE和RSE患者方面比目前标准的人工评价具有更高的敏感性。这表明,在资源受限的情况下,与nlp相关的软件(如DrT)可以大大提高患者对研究、治疗方案和预防性护理干预的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing natural language processing to identify pediatric patients experiencing status epilepticus

Purpose

Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.

Methods

We reviewed EHRs of patients aged 1 month to 21 years from Boston Children's Hospital (BCH). We included all patients with convulsive ESE or RSE during admission. We employed and validated a pre-trained NLP tool, Document review Tool (DrT), to identify patients from 2013–2020, excluding training years (2017–2019). DrT notes a machine-learning score based on a support vector machine (SVM) and bag-of-n-grams. Higher scores indicated more likely ESE/RSE cases. To further evaluate the effectiveness of DrT-assisted review, we compared the results to human-reviewed notes from the pediatric Status Epilepticus Research Group (pSERG) consortium at BCH.

Results

The pre-trained algorithm identified 170 patients with RSE using DrT (Sensitivity: 98.8%), compared to 116 patients identified during human review (Sensitivity: 67.4%). Additionally, we identified 207 patients with ESE using DrT (Sensitivity: 99.5%), compared to 91 patients identified using human review (Sensitivity: 43.8%). Overall, DrT missed 3 cases (2 RSE and 1 ESE cases) that were identified during human review and identified 173 cases (56 RSE and 117 ESE cases) that were not found during the human review.

Conclusion

DrT-assisted manual review demonstrated higher sensitivity in identifying patients with ESE and RSE than the current standard of human review. This suggests that in contexts characterized by resource constraints NLP-related software like DrT can considerably enhance patient identification for research studies, treatment protocols, and preventative care interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seizure-European Journal of Epilepsy
Seizure-European Journal of Epilepsy 医学-临床神经学
CiteScore
5.60
自引率
6.70%
发文量
231
审稿时长
34 days
期刊介绍: Seizure - European Journal of Epilepsy is an international journal owned by Epilepsy Action (the largest member led epilepsy organisation in the UK). It provides a forum for papers on all topics related to epilepsy and seizure disorders.
期刊最新文献
Ictal-interictal continuum following coil embolization of cerebral aneurysms Amygdalar volume asymmetry informs laterality in temporal lobe epilepsy: MRI-SEEG study Corrigendum to “Predictive performances of STESS and EMSE in a Norwegian adult status epilepticus cohort” [Seizure 70 (2019) 6-11] A call for better information about epilepsy: The next of kin perspective Alterations in white matter integrity and correlations with clinical characteristics in children with non-lesional temporal lobe epilepsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1