基于多回波径向FLASH和模型重建的快速、高分辨率、无失真的胎儿脑成像。

ArXiv Pub Date : 2025-01-07
Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour
{"title":"基于多回波径向FLASH和模型重建的快速、高分辨率、无失真的胎儿脑成像。","authors":"Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a rapid, high-resolution and distortion-free quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping technique for fetal brain at 3 T.</p><p><strong>Methods: </strong>A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> and <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> field maps directly from the acquired k-space data. Validations have been performed on numerical and NIST phantoms and five fetal subjects ranging from 27 weeks to 36 weeks gestation age.</p><p><strong>Results: </strong>Both numerical and experimental phantom studies confirm good accuracy and precision of the proposed method. In fetal studies, both the parallel imaging compressed sensing (PICS) technique with a Graph Cut algorithm and the model-based approach proved effective for parameter quantification, with the latter providing enhanced image details. Compared to commonly used multi-echo EPI approaches, the proposed radial technique shows improved spatial resolution (1.1 × 1.1 × 3 mm<sup>3</sup> vs. 2-3 × 2-3 × 3 mm<sup>3</sup>) and reduced distortion. Quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> results confirm good agreement between the two acquisition strategies. Additionally, high-resolution, distortion-free <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> -weighted images can be synthesized, offering complementary information to HASTE.</p><p><strong>Conclusion: </strong>This work demonstrates the feasibility of radial acquisition for motion-robust quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping of the fetal brain. This proposed multi-echo radial FLASH, combined with calibrationless model-based reconstruction, achieves accurate, distortion-free fetal brain <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping at a nominal resolution of 1.1 × 1.1 × 3 mm<sup>3</sup> within 2 seconds.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722525/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Rapid, High-resolution and Distortion-free <ns0:math> <ns0:msubsup><ns0:mrow><ns0:mi>R</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn></ns0:mrow> <ns0:mrow><ns0:mi>*</ns0:mi></ns0:mrow> </ns0:msubsup> </ns0:math> Mapping of Fetal Brain using Multi-echo Radial FLASH and Model-based Reconstruction.\",\"authors\":\"Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a rapid, high-resolution and distortion-free quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping technique for fetal brain at 3 T.</p><p><strong>Methods: </strong>A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> and <math> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </math> field maps directly from the acquired k-space data. Validations have been performed on numerical and NIST phantoms and five fetal subjects ranging from 27 weeks to 36 weeks gestation age.</p><p><strong>Results: </strong>Both numerical and experimental phantom studies confirm good accuracy and precision of the proposed method. In fetal studies, both the parallel imaging compressed sensing (PICS) technique with a Graph Cut algorithm and the model-based approach proved effective for parameter quantification, with the latter providing enhanced image details. Compared to commonly used multi-echo EPI approaches, the proposed radial technique shows improved spatial resolution (1.1 × 1.1 × 3 mm<sup>3</sup> vs. 2-3 × 2-3 × 3 mm<sup>3</sup>) and reduced distortion. Quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> results confirm good agreement between the two acquisition strategies. Additionally, high-resolution, distortion-free <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> -weighted images can be synthesized, offering complementary information to HASTE.</p><p><strong>Conclusion: </strong>This work demonstrates the feasibility of radial acquisition for motion-robust quantitative <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping of the fetal brain. This proposed multi-echo radial FLASH, combined with calibrationless model-based reconstruction, achieves accurate, distortion-free fetal brain <math> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> mapping at a nominal resolution of 1.1 × 1.1 × 3 mm<sup>3</sup> within 2 seconds.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:建立一种快速、高分辨率、无失真的3 t胎儿脑$R_{2}^{*}$定量制图技术。方法:采用带点梯度的二维多回波径向FLASH序列,用于3 t孕妇自由呼吸胎儿脑数据采集。采用基于稀疏性约束的无校准模型重建方法,直接从采集的k空间数据中联合估计水、脂肪、$R_{2}^{*}$和$B_{0}$场图。在数字模型和NIST模型以及5个胎龄从27周至36周龄的胎儿受试者上进行了验证。结果:数值模拟和实验模拟均证实了该方法的准确性和精密度。在胎儿研究中,基于图切算法的并行成像压缩感知(PICS)技术和基于模型的方法都证明了参数量化的有效性,后者提供了增强的图像细节。与常用的多回波EPI方法相比,所提出的径向技术显示出更高的空间分辨率(1.1美元× 1.1美元× 3 mm$^{3}$ vs 2-3美元× 2-3美元× 3 mm$^{3}$)和更低的失真。量化的$R_{2}^{*}$结果证实了两种收购策略之间的良好一致性。此外,还可以合成高分辨率,无失真的$R_{2}^{*}$加权图像,为HASTE提供补充信息。结论:本工作证明了利用径向采集技术对胎儿大脑进行运动鲁棒定量绘制的可行性。提出的多回声径向FLASH,结合无校准的基于模型的重建,在2秒内以1.1 \times 1.1 \times 3$ mm$^{3}$的标称分辨率实现准确,无扭曲的胎儿大脑$R_{2}^{*}$映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid, High-resolution and Distortion-free R 2 * Mapping of Fetal Brain using Multi-echo Radial FLASH and Model-based Reconstruction.

Purpose: To develop a rapid, high-resolution and distortion-free quantitative R 2 * mapping technique for fetal brain at 3 T.

Methods: A 2D multi-echo radial FLASH sequence with blip gradients is adapted for fetal brain data acquisition during maternal free breathing at 3 T. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, R 2 * and B 0 field maps directly from the acquired k-space data. Validations have been performed on numerical and NIST phantoms and five fetal subjects ranging from 27 weeks to 36 weeks gestation age.

Results: Both numerical and experimental phantom studies confirm good accuracy and precision of the proposed method. In fetal studies, both the parallel imaging compressed sensing (PICS) technique with a Graph Cut algorithm and the model-based approach proved effective for parameter quantification, with the latter providing enhanced image details. Compared to commonly used multi-echo EPI approaches, the proposed radial technique shows improved spatial resolution (1.1 × 1.1 × 3 mm3 vs. 2-3 × 2-3 × 3 mm3) and reduced distortion. Quantitative R 2 * results confirm good agreement between the two acquisition strategies. Additionally, high-resolution, distortion-free R 2 * -weighted images can be synthesized, offering complementary information to HASTE.

Conclusion: This work demonstrates the feasibility of radial acquisition for motion-robust quantitative R 2 * mapping of the fetal brain. This proposed multi-echo radial FLASH, combined with calibrationless model-based reconstruction, achieves accurate, distortion-free fetal brain R 2 * mapping at a nominal resolution of 1.1 × 1.1 × 3 mm3 within 2 seconds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1