水稻转录因子 bHLH25 通过感知 H2O2 增强对多种疾病的抵抗力

IF 28.1 1区 生物学 Q1 CELL BIOLOGY Cell Research Pub Date : 2025-01-14 DOI:10.1038/s41422-024-01058-4
Haicheng Liao, Yu Fang, Junjie Yin, Min He, Yingjie Wei, Juan Zhang, Shuang Yong, Jiankui Cha, Li Song, Xiaobo Zhu, Xixi Chen, Ján Kováč, Qingqing Hou, Zhaotang Ma, Xiaogang Zhou, Lin Chen, Emi Yumoto, Tian Yang, Qi He, Wei Li, Yixin Deng, Haoxuan Li, Mingwu Li, Hai Qing, Lijuan Zou, Yu Bi, Jiali Liu, Yihua Yang, Daihua Ye, Qi Tao, Long Wang, Qing Xiong, Xiang Lu, Yongyan Tang, Ting Li, Bingtian Ma, Peng Qin, Yan Li, Wenming Wang, Yangwen Qian, Jaroslav Ďurkovič, Koji Miyamoto, Mawsheng Chern, Shigui Li, Weitao Li, Jing Wang, Xuewei Chen
{"title":"水稻转录因子 bHLH25 通过感知 H2O2 增强对多种疾病的抵抗力","authors":"Haicheng Liao, Yu Fang, Junjie Yin, Min He, Yingjie Wei, Juan Zhang, Shuang Yong, Jiankui Cha, Li Song, Xiaobo Zhu, Xixi Chen, Ján Kováč, Qingqing Hou, Zhaotang Ma, Xiaogang Zhou, Lin Chen, Emi Yumoto, Tian Yang, Qi He, Wei Li, Yixin Deng, Haoxuan Li, Mingwu Li, Hai Qing, Lijuan Zou, Yu Bi, Jiali Liu, Yihua Yang, Daihua Ye, Qi Tao, Long Wang, Qing Xiong, Xiang Lu, Yongyan Tang, Ting Li, Bingtian Ma, Peng Qin, Yan Li, Wenming Wang, Yangwen Qian, Jaroslav Ďurkovič, Koji Miyamoto, Mawsheng Chern, Shigui Li, Weitao Li, Jing Wang, Xuewei Chen","doi":"10.1038/s41422-024-01058-4","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H<sub>2</sub>O<sub>2</sub> in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H<sub>2</sub>O<sub>2</sub> to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H<sub>2</sub>O<sub>2</sub>, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses <i>miR397b</i> expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H<sub>2</sub>O<sub>2</sub> causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of <i>Copalyl Diphosphate Synthase 2</i> (<i>CPS2</i>), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H<sub>2</sub>O<sub>2</sub>, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H<sub>2</sub>O<sub>2</sub> to change functions.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"38 1","pages":""},"PeriodicalIF":28.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H2O2\",\"authors\":\"Haicheng Liao, Yu Fang, Junjie Yin, Min He, Yingjie Wei, Juan Zhang, Shuang Yong, Jiankui Cha, Li Song, Xiaobo Zhu, Xixi Chen, Ján Kováč, Qingqing Hou, Zhaotang Ma, Xiaogang Zhou, Lin Chen, Emi Yumoto, Tian Yang, Qi He, Wei Li, Yixin Deng, Haoxuan Li, Mingwu Li, Hai Qing, Lijuan Zou, Yu Bi, Jiali Liu, Yihua Yang, Daihua Ye, Qi Tao, Long Wang, Qing Xiong, Xiang Lu, Yongyan Tang, Ting Li, Bingtian Ma, Peng Qin, Yan Li, Wenming Wang, Yangwen Qian, Jaroslav Ďurkovič, Koji Miyamoto, Mawsheng Chern, Shigui Li, Weitao Li, Jing Wang, Xuewei Chen\",\"doi\":\"10.1038/s41422-024-01058-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H<sub>2</sub>O<sub>2</sub> in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H<sub>2</sub>O<sub>2</sub> to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H<sub>2</sub>O<sub>2</sub>, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses <i>miR397b</i> expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H<sub>2</sub>O<sub>2</sub> causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of <i>Copalyl Diphosphate Synthase 2</i> (<i>CPS2</i>), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H<sub>2</sub>O<sub>2</sub>, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H<sub>2</sub>O<sub>2</sub> to change functions.</p>\",\"PeriodicalId\":9926,\"journal\":{\"name\":\"Cell Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":28.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41422-024-01058-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41422-024-01058-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在所有真核生物中,过氧化氢(H2O2)是调节许多生物过程(包括先天免疫)的一种无处不在的信号。然而,人们对真核生物中的转录因子如何直接感知 H2O2 仍然知之甚少。在这里,我们报告了水稻碱性/螺旋环-螺旋转录因子 bHLH25 直接感知 H2O2 以赋予对真菌或细菌引起的多种疾病的抗性。病原体侵袭时,水稻植株会增加 H2O2 的产生,H2O2 会直接氧化细胞核中蛋氨酸 256 处的 bHLH25。氧化后的 bHLH25 会抑制 miR397b 的表达,从而激活木质素的生物合成以加固植物细胞壁,防止病原体侵入植物细胞。木质素生物合成会消耗 H2O2,导致未氧化的 bHLH25 积累。非氧化的 bHLH25 会促进 Copalyl Diphosphate Synthase 2(CPS2)的表达,从而增加植物木质素的生物合成,抑制逃入植物体内的病原体的扩展。bHLH25 的这种氧化/非氧化状态变化可使植物将 H2O2、木质素和植物木质素维持在最佳水平,从而有效对抗病原体,并防止这三种分子过度积累而危害植物。因此,我们的发现揭示了一种新的机制,即一种蛋白质可促进两种独立的防御途径来对抗病原体。重要的是,现有植物基因组中的 bHLH25 同源物都含有一个保守的类似 M256 的蛋氨酸,这表明这一机制在植物界广泛存在。此外,其他真核转录因子也可能采用这种金属氧化机制来感知 H2O2 以改变功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H2O2

Hydrogen peroxide (H2O2) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H2O2 in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H2O2 to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H2O2, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses miR397b expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H2O2 causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of Copalyl Diphosphate Synthase 2 (CPS2), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H2O2, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H2O2 to change functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Research
Cell Research 生物-细胞生物学
CiteScore
53.90
自引率
0.70%
发文量
2420
审稿时长
2.3 months
期刊介绍: Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.
期刊最新文献
Chemogenetics for sensing antigens The non-canonical proteome: a novel contributor to cancer proliferation Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H2O2 Comprehensive discovery and functional characterization of the noncanonical proteome. Fourth-generation chimeric antigen receptor T-cell therapy is tolerable and efficacious in treatment-resistant rheumatoid arthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1