{"title":"A Highly Selective Probe for Real-Time Monitoring of Ethylenediamine with Ratiometric Luminescent and Colorimetric Dual-Mode Responses","authors":"Qian Zhou, Xiurong Ma, Xian Meng, Runying He, Caihong Shi, Yonggang Shi, Qiue Cao, Liyan Zheng","doi":"10.1021/acs.analchem.4c04080","DOIUrl":null,"url":null,"abstract":"Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4′-(9<i>H</i>-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I<sub>2</sub>) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring. The experimental and theoretical calculation results revealed that the response mechanism was due to forming a charge transfer (CT) state when p-N-DPC·I<sub>2</sub> met with EDA. In addition, a hydrogel-based sensing chip was developed to achieve the ultrasensitive recognition of EDA vapor with the naked eye at a concentration as low as 10 ppm. This study developed a new probe with ratiometric fluorescent and colorimetric modes to detect EDA both in solution and vapor.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"68 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Highly Selective Probe for Real-Time Monitoring of Ethylenediamine with Ratiometric Luminescent and Colorimetric Dual-Mode Responses
Ethylenediamine (EDA), as an important chemical raw material and fine chemical intermediate, has been widely applied in various industries. Real-time monitoring of EDA is highly desirable in daily life due to its potential threat to human health. Herein, we report a molecular probe named 4,4′-(9H-carbazole-3,6-diyl)bis(1-(naphthalen-2-ylmethyl)pyridin-1-ium) iodide (p-N-DPC·I2) with ratiometric luminescent and colorimetric dual-mode responses toward EDA, endowing a highly sensitive and selective detection method for its real-time monitoring. The experimental and theoretical calculation results revealed that the response mechanism was due to forming a charge transfer (CT) state when p-N-DPC·I2 met with EDA. In addition, a hydrogel-based sensing chip was developed to achieve the ultrasensitive recognition of EDA vapor with the naked eye at a concentration as low as 10 ppm. This study developed a new probe with ratiometric fluorescent and colorimetric modes to detect EDA both in solution and vapor.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.