基于分解的定时到达避免任务的机会约束控制

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-16 DOI:10.1109/LCSYS.2024.3518571
Li Tan;Wei Ren;Junlin Xiong
{"title":"基于分解的定时到达避免任务的机会约束控制","authors":"Li Tan;Wei Ren;Junlin Xiong","doi":"10.1109/LCSYS.2024.3518571","DOIUrl":null,"url":null,"abstract":"This letter addresses the control problem of mobile robots with random noises under timed reach-avoid (TRA) tasks. TRA tasks are expressed as signal temporal logic (STL) formulas, and an optimization problem (OP) is formulated such that the chance constraint (CC) is embedded. To deal with the OP in the continuous-time setting, a local-to-global control strategy is proposed. We first decompose the STL formula into a finite number of local ones, and then decompose and convert the CC into deterministic constraints such that a finite number of local OPs are established and solved efficiently. The feasibility of all the local OPs implies the feasibility of the original OP, which results in a control strategy for the task accomplishment. The proposed strategy is further extended to the multi-robot case. Finally, numerical examples and comparisons are presented to illustrate the efficacy of the proposed control strategy.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2961-2966"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition-Based Chance-Constrained Control for Timed Reach-Avoid Tasks\",\"authors\":\"Li Tan;Wei Ren;Junlin Xiong\",\"doi\":\"10.1109/LCSYS.2024.3518571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter addresses the control problem of mobile robots with random noises under timed reach-avoid (TRA) tasks. TRA tasks are expressed as signal temporal logic (STL) formulas, and an optimization problem (OP) is formulated such that the chance constraint (CC) is embedded. To deal with the OP in the continuous-time setting, a local-to-global control strategy is proposed. We first decompose the STL formula into a finite number of local ones, and then decompose and convert the CC into deterministic constraints such that a finite number of local OPs are established and solved efficiently. The feasibility of all the local OPs implies the feasibility of the original OP, which results in a control strategy for the task accomplishment. The proposed strategy is further extended to the multi-robot case. Finally, numerical examples and comparisons are presented to illustrate the efficacy of the proposed control strategy.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2961-2966\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804133/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804133/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带随机噪声的移动机器人在定时到达-避免(TRA)任务下的控制问题。将TRA任务表示为信号时间逻辑(STL)公式,并提出了嵌入机会约束(CC)的优化问题(OP)。针对连续时间环境下的OP问题,提出了一种局部到全局的控制策略。我们首先将STL公式分解为有限个局部约束,然后将CC分解转化为确定性约束,从而有效地建立和求解有限个局部OPs。所有局部OP的可行性意味着原始OP的可行性,从而得到任务完成的控制策略。将该策略进一步推广到多机器人情况下。最后,通过数值算例和比较说明了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decomposition-Based Chance-Constrained Control for Timed Reach-Avoid Tasks
This letter addresses the control problem of mobile robots with random noises under timed reach-avoid (TRA) tasks. TRA tasks are expressed as signal temporal logic (STL) formulas, and an optimization problem (OP) is formulated such that the chance constraint (CC) is embedded. To deal with the OP in the continuous-time setting, a local-to-global control strategy is proposed. We first decompose the STL formula into a finite number of local ones, and then decompose and convert the CC into deterministic constraints such that a finite number of local OPs are established and solved efficiently. The feasibility of all the local OPs implies the feasibility of the original OP, which results in a control strategy for the task accomplishment. The proposed strategy is further extended to the multi-robot case. Finally, numerical examples and comparisons are presented to illustrate the efficacy of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1