随机量化下分布梯度方法的O(1/k)收敛性

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-16 DOI:10.1109/LCSYS.2024.3519013
Amit Dutta;Thinh T. Doan
{"title":"随机量化下分布梯度方法的O(1/k)收敛性","authors":"Amit Dutta;Thinh T. Doan","doi":"10.1109/LCSYS.2024.3519013","DOIUrl":null,"url":null,"abstract":"We revisit the so-called distributed two-time-scale stochastic gradient method for solving a strongly convex optimization problem over a network of agents in a bandwidth-limited regime. In this setting, the agents can only exchange the quantized values of their local variables using a limited number of communication bits. Due to quantization errors, the existing best-known convergence results of this method can only achieve a suboptimal rate <inline-formula> <tex-math>$\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/\\sqrt {k}$ </tex-math></inline-formula>), while the optimal rate is <inline-formula> <tex-math>$\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/k$ </tex-math></inline-formula>) under no quantization, where k is the time iteration. The main contribution of this letter is to address this theoretical gap, where we study a sufficient condition and develop an innovative analysis and step-size selection to achieve the optimal convergence rate <inline-formula> <tex-math>$\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/k$ </tex-math></inline-formula>) for the distributed gradient methods given any number of quantization bits. We provide numerical simulations to illustrate the effectiveness of our theoretical results.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2967-2972"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the O(1/k) Convergence of Distributed Gradient Methods Under Random Quantization\",\"authors\":\"Amit Dutta;Thinh T. Doan\",\"doi\":\"10.1109/LCSYS.2024.3519013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the so-called distributed two-time-scale stochastic gradient method for solving a strongly convex optimization problem over a network of agents in a bandwidth-limited regime. In this setting, the agents can only exchange the quantized values of their local variables using a limited number of communication bits. Due to quantization errors, the existing best-known convergence results of this method can only achieve a suboptimal rate <inline-formula> <tex-math>$\\\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/\\\\sqrt {k}$ </tex-math></inline-formula>), while the optimal rate is <inline-formula> <tex-math>$\\\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/k$ </tex-math></inline-formula>) under no quantization, where k is the time iteration. The main contribution of this letter is to address this theoretical gap, where we study a sufficient condition and develop an innovative analysis and step-size selection to achieve the optimal convergence rate <inline-formula> <tex-math>$\\\\mathcal {O}$ </tex-math></inline-formula>(<inline-formula> <tex-math>$1/k$ </tex-math></inline-formula>) for the distributed gradient methods given any number of quantization bits. We provide numerical simulations to illustrate the effectiveness of our theoretical results.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2967-2972\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804186/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804186/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们重新审视了所谓的分布式双时间尺度随机梯度方法,用于在带宽有限的情况下解决代理网络上的强凸优化问题。在此设置中,代理只能使用有限数量的通信位交换其局部变量的量化值。由于量化误差,该方法现有最著名的收敛结果只能达到次优速率$\mathcal {O}$ ($1/\sqrt {k}$),而最优速率为$\mathcal {O}$ ($1/k$),其中k为时间迭代。这封信的主要贡献是解决这一理论差距,我们研究了一个充分条件,并开发了一种创新的分析和步长选择,以实现给定任意数量量化比特的分布式梯度方法的最佳收敛率$\mathcal {O}$ ($1/k$)。我们提供了数值模拟来说明我们的理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the O(1/k) Convergence of Distributed Gradient Methods Under Random Quantization
We revisit the so-called distributed two-time-scale stochastic gradient method for solving a strongly convex optimization problem over a network of agents in a bandwidth-limited regime. In this setting, the agents can only exchange the quantized values of their local variables using a limited number of communication bits. Due to quantization errors, the existing best-known convergence results of this method can only achieve a suboptimal rate $\mathcal {O}$ ( $1/\sqrt {k}$ ), while the optimal rate is $\mathcal {O}$ ( $1/k$ ) under no quantization, where k is the time iteration. The main contribution of this letter is to address this theoretical gap, where we study a sufficient condition and develop an innovative analysis and step-size selection to achieve the optimal convergence rate $\mathcal {O}$ ( $1/k$ ) for the distributed gradient methods given any number of quantization bits. We provide numerical simulations to illustrate the effectiveness of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Robust and Exponential Stability in Barrier-Certified Systems via Contracting Piecewise Smooth Dynamics PID Control of MIMO Nonlinear Uncertain Systems With Low Relative Degrees Robust NMPC for Uncalibrated IBVS Control of AUVs Contraction Analysis of Continuation Method for Suboptimal Model Predictive Control Spiking Nonlinear Opinion Dynamics (S-NOD) for Agile Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1