{"title":"带本地集成商的多车网络性能边界","authors":"Jonas Hansson;Emma Tegling","doi":"10.1109/LCSYS.2024.3518397","DOIUrl":null,"url":null,"abstract":"In this letter, we consider the problem of coordinating a collection of nth-order integrator systems. The coordination is achieved through the novel serial consensus design; this control design achieves a stable closed-loop system while adhering to the constraint of only using local and relative measurements. Earlier work has shown that second-order serial consensus can stabilize a collection of double integrators with scalable performance conditions independent of the number of agents and topology. This letter generalizes these performance results to an arbitrary order <inline-formula> <tex-math>${\\mathrm { n}}\\geq 1$ </tex-math></inline-formula>. The derived performance bounds depend on the condition number, measured in the vector-induced maximum matrix norm, of a general diagonalizing matrix. We precisely characterize how a minimal condition number can be achieved. Third-order serial consensus is illustrated through a case study of PI-controlled vehicular formation, where the added integrators are used to mitigate the effect of unmeasured load disturbances. The theoretical results are illustrated through examples.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2901-2906"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Bounds for Multi-Vehicle Networks With Local Integrators\",\"authors\":\"Jonas Hansson;Emma Tegling\",\"doi\":\"10.1109/LCSYS.2024.3518397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we consider the problem of coordinating a collection of nth-order integrator systems. The coordination is achieved through the novel serial consensus design; this control design achieves a stable closed-loop system while adhering to the constraint of only using local and relative measurements. Earlier work has shown that second-order serial consensus can stabilize a collection of double integrators with scalable performance conditions independent of the number of agents and topology. This letter generalizes these performance results to an arbitrary order <inline-formula> <tex-math>${\\\\mathrm { n}}\\\\geq 1$ </tex-math></inline-formula>. The derived performance bounds depend on the condition number, measured in the vector-induced maximum matrix norm, of a general diagonalizing matrix. We precisely characterize how a minimal condition number can be achieved. Third-order serial consensus is illustrated through a case study of PI-controlled vehicular formation, where the added integrators are used to mitigate the effect of unmeasured load disturbances. The theoretical results are illustrated through examples.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2901-2906\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10802940/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10802940/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Performance Bounds for Multi-Vehicle Networks With Local Integrators
In this letter, we consider the problem of coordinating a collection of nth-order integrator systems. The coordination is achieved through the novel serial consensus design; this control design achieves a stable closed-loop system while adhering to the constraint of only using local and relative measurements. Earlier work has shown that second-order serial consensus can stabilize a collection of double integrators with scalable performance conditions independent of the number of agents and topology. This letter generalizes these performance results to an arbitrary order ${\mathrm { n}}\geq 1$ . The derived performance bounds depend on the condition number, measured in the vector-induced maximum matrix norm, of a general diagonalizing matrix. We precisely characterize how a minimal condition number can be achieved. Third-order serial consensus is illustrated through a case study of PI-controlled vehicular formation, where the added integrators are used to mitigate the effect of unmeasured load disturbances. The theoretical results are illustrated through examples.