Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang
{"title":"基于主动学习的不确定系统DoS攻击弹性控制","authors":"Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang","doi":"10.1109/LCSYS.2024.3522953","DOIUrl":null,"url":null,"abstract":"In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3297-3302"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning-Based Control for Resiliency of Uncertain Systems Under DoS Attacks\",\"authors\":\"Sayan Chakraborty;Weinan Gao;Kyriakos G. Vamvoudakis;Zhong-Ping Jiang\",\"doi\":\"10.1109/LCSYS.2024.3522953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3297-3302\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816478/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816478/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Active Learning-Based Control for Resiliency of Uncertain Systems Under DoS Attacks
In this letter, we present an active learning-based control method for discrete-time linear systems with unknown parameters under denial-of-service (DoS) attacks. For any DoS duration parameter, using switching systems theory and adaptive dynamic programming, an active learning-based control technique is developed. A critical DoS average dwell-time is learned from online input-state data, guaranteeing stability of the equilibrium point of the closed-loop system in the presence of DoS attacks with average dwell-time greater than or equal to the critical DoS average dwell-time. The effectiveness of the proposed methodology is illustrated via a numerical example.