Gaurav Bhardwaj, Malihe Mohammadiun, Carlos Saul Osorio Gonzalez, Satinder Kaur Brar and Shooka Karimpour
{"title":"淡水中废水引起的微塑料生物污染:粒径和流速的作用","authors":"Gaurav Bhardwaj, Malihe Mohammadiun, Carlos Saul Osorio Gonzalez, Satinder Kaur Brar and Shooka Karimpour","doi":"10.1039/D4VA00303A","DOIUrl":null,"url":null,"abstract":"<p >Microplastics (MPs), discharged from wastewater treatment plants (WWTPs), are found abundantly in freshwater systems. Along with MPs, various microorganisms that evade WWTP disinfection may colonize these particles, leading to biofouling. This study assessed the performance of six bacterial strains isolated from wastewater and the factors influencing biofilm formation using synthetic freshwater and polyethylene (PE) microplastics as a model. The effect of two PE microplastic sizes (180–200 μm and 3–4 mm) and three flow velocities (0.238, 0.11, and 0.077 m s<small><sup>−1</sup></small>) were tested on the isolated strains' microbial growth and biofilm formation. Smaller MPs notably enhanced the growth rate. The treatment with small PE microplastics and a low flow velocity promoted the biofilm formation compared to a higher flow velocity where rapid microbial growth was observed but showed a lower biofilm formation after seven days of cultivation. These findings reveal how MP size and flow velocities influence biofilm development, advancing the understanding of MP-microbial interactions in freshwater aquatic environments.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 1","pages":" 90-96"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00303a?page=search","citationCount":"0","resultStr":"{\"title\":\"Wastewater-induced microplastic biofouling in freshwater: role of particle size and flow velocity†\",\"authors\":\"Gaurav Bhardwaj, Malihe Mohammadiun, Carlos Saul Osorio Gonzalez, Satinder Kaur Brar and Shooka Karimpour\",\"doi\":\"10.1039/D4VA00303A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microplastics (MPs), discharged from wastewater treatment plants (WWTPs), are found abundantly in freshwater systems. Along with MPs, various microorganisms that evade WWTP disinfection may colonize these particles, leading to biofouling. This study assessed the performance of six bacterial strains isolated from wastewater and the factors influencing biofilm formation using synthetic freshwater and polyethylene (PE) microplastics as a model. The effect of two PE microplastic sizes (180–200 μm and 3–4 mm) and three flow velocities (0.238, 0.11, and 0.077 m s<small><sup>−1</sup></small>) were tested on the isolated strains' microbial growth and biofilm formation. Smaller MPs notably enhanced the growth rate. The treatment with small PE microplastics and a low flow velocity promoted the biofilm formation compared to a higher flow velocity where rapid microbial growth was observed but showed a lower biofilm formation after seven days of cultivation. These findings reveal how MP size and flow velocities influence biofilm development, advancing the understanding of MP-microbial interactions in freshwater aquatic environments.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":\" 1\",\"pages\":\" 90-96\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00303a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00303a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00303a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
从污水处理厂排放的微塑料(MPs)在淡水系统中大量存在。与MPs一起,逃避污水处理厂消毒的各种微生物可能在这些颗粒上定植,导致生物污染。本研究以合成淡水和聚乙烯(PE)微塑料为模型,评估了从废水中分离的6株细菌的性能及影响生物膜形成的因素。研究了2种PE微塑料尺寸(180 ~ 200 μm和3 ~ 4 mm)和3种流速(0.238、0.11和0.077 m s−1)对分离菌株微生物生长和生物膜形成的影响。较小的国会议员显著提高了增长率。小PE微塑料和低流速处理促进了生物膜的形成,相比之下,高流速下微生物生长迅速,但培养7天后生物膜的形成较低。这些发现揭示了MP大小和流速如何影响生物膜的发育,促进了对淡水水生环境中MP-微生物相互作用的理解。
Wastewater-induced microplastic biofouling in freshwater: role of particle size and flow velocity†
Microplastics (MPs), discharged from wastewater treatment plants (WWTPs), are found abundantly in freshwater systems. Along with MPs, various microorganisms that evade WWTP disinfection may colonize these particles, leading to biofouling. This study assessed the performance of six bacterial strains isolated from wastewater and the factors influencing biofilm formation using synthetic freshwater and polyethylene (PE) microplastics as a model. The effect of two PE microplastic sizes (180–200 μm and 3–4 mm) and three flow velocities (0.238, 0.11, and 0.077 m s−1) were tested on the isolated strains' microbial growth and biofilm formation. Smaller MPs notably enhanced the growth rate. The treatment with small PE microplastics and a low flow velocity promoted the biofilm formation compared to a higher flow velocity where rapid microbial growth was observed but showed a lower biofilm formation after seven days of cultivation. These findings reveal how MP size and flow velocities influence biofilm development, advancing the understanding of MP-microbial interactions in freshwater aquatic environments.