考虑不确定性风险的基于矩阵任务优先级的光伏发电折旧费用分层定量预测

Q2 Energy Energy Informatics Pub Date : 2025-01-14 DOI:10.1186/s42162-024-00456-7
Yinming Liu, Wengang Wang, Xiangyue Meng, Yuchen Zhang, Zhuyu Chen
{"title":"考虑不确定性风险的基于矩阵任务优先级的光伏发电折旧费用分层定量预测","authors":"Yinming Liu,&nbsp;Wengang Wang,&nbsp;Xiangyue Meng,&nbsp;Yuchen Zhang,&nbsp;Zhuyu Chen","doi":"10.1186/s42162-024-00456-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to provide a reliable basis for the cost management of photovoltaic power generation, it is necessary to accurately predict the depreciation expense of photovoltaic power generation. Therefore, a hierarchical quantitative prediction method of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertain risks is proposed. Based on the conditional value-at-risk theory, a more comprehensive risk measure than VaR is provided, and the uncertainty risk value of photovoltaic power generation is calculated by considering the average loss exceeding this loss value. According to the calculated risk value, a double-layer photovoltaic power generation cost planning model is constructed, the upper and lower objective functions of the model are determined, and the constraint conditions are designed; Obtain a cost planning objective function solution base on a matrix task prioritization method, and generating a prioritization table; Prediction of photovoltaic power generation depreciation expense based on long-short memory neural network for each solution in the sorting table. In practical application, the test results show that this method can complete the risk quantitative analysis of uncertain factors, and the tracking ability and fitting degree of prediction are good; An ordered list of solutions of each objective function can be generated; The method in this paper is used to predict the depreciation expense of photovoltaic power generation in the first 10 solutions of priority ranking, and the maximum deviation of the prediction result is -0.65 million yuan.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00456-7","citationCount":"0","resultStr":"{\"title\":\"Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk\",\"authors\":\"Yinming Liu,&nbsp;Wengang Wang,&nbsp;Xiangyue Meng,&nbsp;Yuchen Zhang,&nbsp;Zhuyu Chen\",\"doi\":\"10.1186/s42162-024-00456-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to provide a reliable basis for the cost management of photovoltaic power generation, it is necessary to accurately predict the depreciation expense of photovoltaic power generation. Therefore, a hierarchical quantitative prediction method of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertain risks is proposed. Based on the conditional value-at-risk theory, a more comprehensive risk measure than VaR is provided, and the uncertainty risk value of photovoltaic power generation is calculated by considering the average loss exceeding this loss value. According to the calculated risk value, a double-layer photovoltaic power generation cost planning model is constructed, the upper and lower objective functions of the model are determined, and the constraint conditions are designed; Obtain a cost planning objective function solution base on a matrix task prioritization method, and generating a prioritization table; Prediction of photovoltaic power generation depreciation expense based on long-short memory neural network for each solution in the sorting table. In practical application, the test results show that this method can complete the risk quantitative analysis of uncertain factors, and the tracking ability and fitting degree of prediction are good; An ordered list of solutions of each objective function can be generated; The method in this paper is used to predict the depreciation expense of photovoltaic power generation in the first 10 solutions of priority ranking, and the maximum deviation of the prediction result is -0.65 million yuan.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00456-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00456-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00456-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

为了给光伏发电的成本管理提供可靠的依据,有必要对光伏发电的折旧费用进行准确的预测。为此,提出了一种考虑不确定风险的基于矩阵任务优先级的光伏发电折旧费用分层定量预测方法。基于条件风险值理论,给出了比VaR更全面的风险度量,并考虑超过该损失值的平均损失计算光伏发电的不确定性风险值。根据计算出的风险值,构建双层光伏发电成本规划模型,确定模型的上、下目标函数,设计约束条件;基于矩阵任务优先排序法得到成本规划目标函数解,并生成优先排序表;基于长短记忆神经网络的光伏发电折旧费用排序表各方案预测在实际应用中,试验结果表明,该方法能够完成不确定因素的风险定量分析,预测的跟踪能力和拟合程度较好;可以生成每个目标函数解的有序列表;采用本文方法对优先级排序前10个方案的光伏发电折旧费用进行预测,预测结果的最大偏差为- 65万元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk

In order to provide a reliable basis for the cost management of photovoltaic power generation, it is necessary to accurately predict the depreciation expense of photovoltaic power generation. Therefore, a hierarchical quantitative prediction method of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertain risks is proposed. Based on the conditional value-at-risk theory, a more comprehensive risk measure than VaR is provided, and the uncertainty risk value of photovoltaic power generation is calculated by considering the average loss exceeding this loss value. According to the calculated risk value, a double-layer photovoltaic power generation cost planning model is constructed, the upper and lower objective functions of the model are determined, and the constraint conditions are designed; Obtain a cost planning objective function solution base on a matrix task prioritization method, and generating a prioritization table; Prediction of photovoltaic power generation depreciation expense based on long-short memory neural network for each solution in the sorting table. In practical application, the test results show that this method can complete the risk quantitative analysis of uncertain factors, and the tracking ability and fitting degree of prediction are good; An ordered list of solutions of each objective function can be generated; The method in this paper is used to predict the depreciation expense of photovoltaic power generation in the first 10 solutions of priority ranking, and the maximum deviation of the prediction result is -0.65 million yuan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Intelligent information systems for power grid fault analysis by computer communication technology Application of simulated annealing algorithm in multi-objective cooperative scheduling of load and storage of source network for load side of new power system Hierarchical quantitative prediction of photovoltaic power generation depreciation expense based on matrix task prioritization considering uncertainty risk Transmission line trip faults under extreme snow and ice conditions: a case study A photovoltaic power ultra short-term prediction method integrating Hungarian clustering and PSO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1