{"title":"离子、pH和底物性质对来自Phi11的健壮单链DNA结合(SSB)样蛋白的结构和活性的影响","authors":"V. Ratre, M. Biswas","doi":"10.1007/s00203-024-04222-x","DOIUrl":null,"url":null,"abstract":"<div><p>The gene <i>gp13</i> in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1). SSB proteins protect Single-stranded DNA intermediates generated during replication, recombination, and repair from nuclease degradation by binding to them. This highlights the importance of SSB proteins in the DNA metabolic processes. In this investigation, we have reported a systematic analysis of the structural and functional changes induced in rGp13 (the gene product of <i>gp13</i>) by several factors, such as metal ions and buffers of varying pH. The nature and length of the substrate required for the optimum function of rGp13 has also been investigated. Our results suggest that rGp13 is a robust protein which maintains its structure and function over a wide range of pH, with pH 4 being an exception. The monovalent cations used in this study seemed to have a stabilizing effect on the protein. Interestingly, among the divalent cations studied, only Zn<sup>2+</sup> ions were found to completely destabilise rGp13, with a complete loss of the parallel β-sheet and α-helical content of the protein. This, in turn, totally abolished the DNA binding activity of rGp13. Another interesting observation from this study was that rGP13 could also bind to double-stranded DNA molecules. In summary, SSBs bind to dsDNA, ensuring genome integrity, protecting ssDNA, and impacting transcriptional processes. These crucial functions highlight their significance in maintaining cellular stability.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11\",\"authors\":\"V. Ratre, M. Biswas\",\"doi\":\"10.1007/s00203-024-04222-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gene <i>gp13</i> in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1). SSB proteins protect Single-stranded DNA intermediates generated during replication, recombination, and repair from nuclease degradation by binding to them. This highlights the importance of SSB proteins in the DNA metabolic processes. In this investigation, we have reported a systematic analysis of the structural and functional changes induced in rGp13 (the gene product of <i>gp13</i>) by several factors, such as metal ions and buffers of varying pH. The nature and length of the substrate required for the optimum function of rGp13 has also been investigated. Our results suggest that rGp13 is a robust protein which maintains its structure and function over a wide range of pH, with pH 4 being an exception. The monovalent cations used in this study seemed to have a stabilizing effect on the protein. Interestingly, among the divalent cations studied, only Zn<sup>2+</sup> ions were found to completely destabilise rGp13, with a complete loss of the parallel β-sheet and α-helical content of the protein. This, in turn, totally abolished the DNA binding activity of rGp13. Another interesting observation from this study was that rGP13 could also bind to double-stranded DNA molecules. In summary, SSBs bind to dsDNA, ensuring genome integrity, protecting ssDNA, and impacting transcriptional processes. These crucial functions highlight their significance in maintaining cellular stability.</p></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"207 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04222-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04222-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11
The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1). SSB proteins protect Single-stranded DNA intermediates generated during replication, recombination, and repair from nuclease degradation by binding to them. This highlights the importance of SSB proteins in the DNA metabolic processes. In this investigation, we have reported a systematic analysis of the structural and functional changes induced in rGp13 (the gene product of gp13) by several factors, such as metal ions and buffers of varying pH. The nature and length of the substrate required for the optimum function of rGp13 has also been investigated. Our results suggest that rGp13 is a robust protein which maintains its structure and function over a wide range of pH, with pH 4 being an exception. The monovalent cations used in this study seemed to have a stabilizing effect on the protein. Interestingly, among the divalent cations studied, only Zn2+ ions were found to completely destabilise rGp13, with a complete loss of the parallel β-sheet and α-helical content of the protein. This, in turn, totally abolished the DNA binding activity of rGp13. Another interesting observation from this study was that rGP13 could also bind to double-stranded DNA molecules. In summary, SSBs bind to dsDNA, ensuring genome integrity, protecting ssDNA, and impacting transcriptional processes. These crucial functions highlight their significance in maintaining cellular stability.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.