山楂果胶及其低聚物对高脂饮食小鼠肠道菌群和代谢产物的影响。

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Food & Function Pub Date : 2025-01-14 DOI:10.1039/d4fo04686b
Xiushan Zhang, Yanmin Cui, Zuoyi Zhang, Xin Huang, Xiaowei Zhang, Xiaopei Hu, Tuoping Li, Suhong Li
{"title":"山楂果胶及其低聚物对高脂饮食小鼠肠道菌群和代谢产物的影响。","authors":"Xiushan Zhang, Yanmin Cui, Zuoyi Zhang, Xin Huang, Xiaowei Zhang, Xiaopei Hu, Tuoping Li, Suhong Li","doi":"10.1039/d4fo04686b","DOIUrl":null,"url":null,"abstract":"<p><p>Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12<i>Z</i>)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of hawthorn pectin and its oligomers on gut microbiota and metabolites in high-fat diet mice.\",\"authors\":\"Xiushan Zhang, Yanmin Cui, Zuoyi Zhang, Xin Huang, Xiaowei Zhang, Xiaopei Hu, Tuoping Li, Suhong Li\",\"doi\":\"10.1039/d4fo04686b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12<i>Z</i>)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.</p>\",\"PeriodicalId\":77,\"journal\":{\"name\":\"Food & Function\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Function\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fo04686b\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04686b","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

果胶是一种天然、绿色、廉价的酸性杂多糖。与多糖相比,低聚糖更容易被人体利用,山楂果胶低聚糖(POS)的生理功能可能因其聚合度(DP)而异。因此,我们主要研究不同DP的山楂果胶(HP)和POS对高脂饮食(HFD)引起的肠道菌群紊乱的影响。HP和POS均可改善由HFD引起的体重增加、血脂异常和葡萄糖稳态,并增加血清GLP-1水平。同时,治疗组回肠Gcg和Pcsk1基因表达的增加进一步证实了这一结果。此外,HP和POS减少了某些机会致病菌,同时恢复了肠道微生物群的丰富度和多样性。同时,HP和POS可通过增加claudin-1、occludin、ZO-1和MUC2基因改善肠道屏障功能障碍。此外,粪便代谢组学研究表明,POS可能通过上调9,10- dhome ((12Z)-9,10-二羟基十八烯-12-烯酸)来促进亚油酸合成,改善脂质代谢,而HP则不能。综上所述,研究结果表明,HP和POS均能改善HFD引起的体重表型改变、肠道菌群破坏和代谢物变化。其中,POS的改善效果优于HP,不同DP的POS改善效果存在差异,其中DP 5的POS改善效果最为显著。这一发现加深了对不同POS生物活性的认识,为进一步优化POS作为功能食品的应用提供了重要依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of hawthorn pectin and its oligomers on gut microbiota and metabolites in high-fat diet mice.

Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12Z)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
期刊最新文献
Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. A plant-based diet index and all-cause and cause-specific mortality: a prospective study. Modification of Ganoderma lucidum spore shells into probiotic carriers: selective loading and colonic delivery of Lacticaseibacillus rhamnosus and effective therapy of inflammatory bowel disease. Monascus pilosus SWM-008 red mold rice and its components, monascinol and monascin, reduce obesity in a high-fat diet-induced rat model through synergistic modulation of gut microbiota and anti-lipogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1