评估土壤和沉积物中放射性碘自然衰减的范式转变:物种特异性机制和途径。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-02-01 Epub Date: 2025-01-12 DOI:10.1016/j.jenvman.2025.124101
Hilary P Emerson, Nikolla P Qafoku, Christian D Johnson, James E Szecsody, Mariah S Doughman, Rob D Mackley, Daniel I Kaplan
{"title":"评估土壤和沉积物中放射性碘自然衰减的范式转变:物种特异性机制和途径。","authors":"Hilary P Emerson, Nikolla P Qafoku, Christian D Johnson, James E Szecsody, Mariah S Doughman, Rob D Mackley, Daniel I Kaplan","doi":"10.1016/j.jenvman.2025.124101","DOIUrl":null,"url":null,"abstract":"<p><p>The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I<sup>-</sup>), iodate (IO<sub>3</sub><sup>-</sup>), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior. Here, current literature is reviewed with the objective to: 1) demonstrate differences in iodine species' geochemical behavior and natural attenuation mechanisms; 2) show that a species-specific (or multi-species) approach provides greater details on contaminant migration and attenuation; and (3) discuss the logistics of a species-specific approach to developing conceptual models for assessing overall contaminant mobility. The species-specific approach results in a more accurate assessment of mass flux and maximum groundwater concentrations; and, therefore, a more defensible risk evaluation to support short- or long-term remediation and/or natural attenuation strategies. Although iodine is the focus of this paper, this methodology could be applied to other risk-driving contaminants such as mercury and uranium, which have even more complex aqueous speciation than iodine, or technetium and chromium, which have complex solid phase speciation and natural attenuation reaction networks. Accounting for species-specific geochemical behavior, while implementing MNA strategies can greatly reduce uncertainty, and, therefore, remedial costs required to ultimately achieve remediation regulatory objectives.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"374 ","pages":"124101"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A paradigm shift for evaluating natural attenuation of radioactive iodine in soils and sediments: Species-specific mechanisms and pathways.\",\"authors\":\"Hilary P Emerson, Nikolla P Qafoku, Christian D Johnson, James E Szecsody, Mariah S Doughman, Rob D Mackley, Daniel I Kaplan\",\"doi\":\"10.1016/j.jenvman.2025.124101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I<sup>-</sup>), iodate (IO<sub>3</sub><sup>-</sup>), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior. Here, current literature is reviewed with the objective to: 1) demonstrate differences in iodine species' geochemical behavior and natural attenuation mechanisms; 2) show that a species-specific (or multi-species) approach provides greater details on contaminant migration and attenuation; and (3) discuss the logistics of a species-specific approach to developing conceptual models for assessing overall contaminant mobility. The species-specific approach results in a more accurate assessment of mass flux and maximum groundwater concentrations; and, therefore, a more defensible risk evaluation to support short- or long-term remediation and/or natural attenuation strategies. Although iodine is the focus of this paper, this methodology could be applied to other risk-driving contaminants such as mercury and uranium, which have even more complex aqueous speciation than iodine, or technetium and chromium, which have complex solid phase speciation and natural attenuation reaction networks. Accounting for species-specific geochemical behavior, while implementing MNA strategies can greatly reduce uncertainty, and, therefore, remedial costs required to ultimately achieve remediation regulatory objectives.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"374 \",\"pages\":\"124101\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2025.124101\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124101","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前,评估监测自然衰减(MNA)的主要方法是基于一个概念模型,该模型利用污染物的总浓度,假设存在单一的含水物种。然而,许多污染物,如金属和放射性核素——包括碘——可以存在于多种物种中,这些物种在环境中的化学行为不同,可以同时存在。例如,放射性碘通常以碘化物(I-)、碘酸盐(IO3-)和有机碘(IO3-)这三种主要水相同时存在,它们经历不同的衰减途径,表现出明显不同的迁移率和地球化学行为。本文对国内外相关文献进行了综述,目的是:1)揭示不同碘种的地球化学行为和自然衰减机制的差异;2)表明物种特异性(或多物种)方法提供了更多关于污染物迁移和衰减的细节;(3)讨论开发用于评估整体污染物流动性的概念模型的特定物种方法的逻辑。针对特定物种的方法可以更准确地评估质量通量和最大地下水浓度;因此,需要一个更有说服力的风险评估来支持短期或长期的修复和/或自然衰减策略。虽然碘是本文的重点,但这种方法可以应用于其他风险驱动污染物,如汞和铀,它们具有比碘更复杂的水相形态,或具有复杂固相形态和自然衰减反应网络的锝和铬。考虑到物种特有的地球化学行为,同时实施MNA策略可以大大减少不确定性,因此,最终实现补救监管目标所需的补救成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A paradigm shift for evaluating natural attenuation of radioactive iodine in soils and sediments: Species-specific mechanisms and pathways.

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I-), iodate (IO3-), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior. Here, current literature is reviewed with the objective to: 1) demonstrate differences in iodine species' geochemical behavior and natural attenuation mechanisms; 2) show that a species-specific (or multi-species) approach provides greater details on contaminant migration and attenuation; and (3) discuss the logistics of a species-specific approach to developing conceptual models for assessing overall contaminant mobility. The species-specific approach results in a more accurate assessment of mass flux and maximum groundwater concentrations; and, therefore, a more defensible risk evaluation to support short- or long-term remediation and/or natural attenuation strategies. Although iodine is the focus of this paper, this methodology could be applied to other risk-driving contaminants such as mercury and uranium, which have even more complex aqueous speciation than iodine, or technetium and chromium, which have complex solid phase speciation and natural attenuation reaction networks. Accounting for species-specific geochemical behavior, while implementing MNA strategies can greatly reduce uncertainty, and, therefore, remedial costs required to ultimately achieve remediation regulatory objectives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
From benefit to burden: Assessing the full range of health impacts in urban green spaces using a threshold model. Microbial changes, including methanogens, influenced by arsenic speciation in anaerobic wetland environments. Removal of high concentration chlorides and organic pollutants from incineration fly ash and sewage sludge hydrothermal liquid by Friedel's salt preparation. Removal performance and mechanism of aniline from landfill leachate by ozone oxidation process using iron-based packed catalyst. Unraveling the role of V modified CoO in a wide pH range Fenton-like process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1