RNA测序揭示了暴露于透明质酸的牙龈成纤维细胞的弱反应。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-23 DOI:10.3390/bioengineering11121307
Layla Panahipour, Atefe Imani, Natália Dos Santos Sanches, Hannes Kühtreiber, Michael Mildner, Reinhard Gruber
{"title":"RNA测序揭示了暴露于透明质酸的牙龈成纤维细胞的弱反应。","authors":"Layla Panahipour, Atefe Imani, Natália Dos Santos Sanches, Hannes Kühtreiber, Michael Mildner, Reinhard Gruber","doi":"10.3390/bioengineering11121307","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726844/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.\",\"authors\":\"Layla Panahipour, Atefe Imani, Natália Dos Santos Sanches, Hannes Kühtreiber, Michael Mildner, Reinhard Gruber\",\"doi\":\"10.3390/bioengineering11121307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121307\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121307","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

透明质酸被建议用于支持软组织萎缩手术和引导组织再生。透明质酸调节结缔组织细胞反应的分子机制尚不清楚。为了阐明透明质酸对结缔组织细胞的影响,我们使用大量RNA测序来确定暴露于1.6%交联透明质酸和0.2%天然透明质酸的牙龈成纤维细胞遗传特征的变化。转录组范围的变化是温和的。即使实现至少1.5 log2倍的变化和1.0 -log10的显著性阈值,也只有12个基因被差异表达。上调基因为PLK3、SLC16A6、IL6、HBEGF、DGKE、DUSP4、PTGS2、FOXC2、ATAD2B、NFATC2,下调基因为MMP24、PLXNA2。RT-PCR分析支持透明质酸对增加选定基因面板表达的影响。大量RNA测序的结果表明,当暴露于透明质酸时,牙龈成纤维细胞的转录组发生了微弱的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid.

Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1