{"title":"通过因果学习识别癌症预后基因。","authors":"Siwei Wu, Chaoyi Yin, Yuezhu Wang, Huiyan Sun","doi":"10.1093/bib/bbae721","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of causal genes for cancer prognosis is critical for estimating disease progression and guiding treatment interventions. In this study, we propose CPCG (Cancer Prognosis's Causal Gene), a two-stage framework identifying gene sets causally associated with patient prognosis across diverse cancer types using transcriptomic data. Initially, an ensemble approach models gene expression's impact on survival with parametric and semiparametric hazard models. Subsequently, an iterative conditional independence test combined with graph pruning is utilized to infer the causal skeleton, thereby pinpointing prognosis-related genes. Experiments on transcriptomic data from 18 cancer types sourced from The Cancer Genome Atlas Project demonstrate CPCG's effectiveness in predicting prognosis under four evaluation metrics. Validations on 24 additional datasets covering 12 cancer types from the Gene Expression Omnibus and the Chinese Glioma Genome Atlas Project further demonstrate CPCG's robustness and generalizability. CPCG identifies a concise but reliable set of genes, obviating the need for gene combination enumeration for survival time estimation. These genes are also proved closely linked to crucial biological processes in cancer. Moreover, CPCG constructs a stable causal skeleton and exhibits insensitivity to the order of data shuffling. Overall, CPCG is a powerful tool for extracting cancer prognostic biomarkers, offering interpretability, generalizability, and robustness. CPCG holds promise for facilitating targeted interventions in clinical treatment strategies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying cancer prognosis genes through causal learning.\",\"authors\":\"Siwei Wu, Chaoyi Yin, Yuezhu Wang, Huiyan Sun\",\"doi\":\"10.1093/bib/bbae721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of causal genes for cancer prognosis is critical for estimating disease progression and guiding treatment interventions. In this study, we propose CPCG (Cancer Prognosis's Causal Gene), a two-stage framework identifying gene sets causally associated with patient prognosis across diverse cancer types using transcriptomic data. Initially, an ensemble approach models gene expression's impact on survival with parametric and semiparametric hazard models. Subsequently, an iterative conditional independence test combined with graph pruning is utilized to infer the causal skeleton, thereby pinpointing prognosis-related genes. Experiments on transcriptomic data from 18 cancer types sourced from The Cancer Genome Atlas Project demonstrate CPCG's effectiveness in predicting prognosis under four evaluation metrics. Validations on 24 additional datasets covering 12 cancer types from the Gene Expression Omnibus and the Chinese Glioma Genome Atlas Project further demonstrate CPCG's robustness and generalizability. CPCG identifies a concise but reliable set of genes, obviating the need for gene combination enumeration for survival time estimation. These genes are also proved closely linked to crucial biological processes in cancer. Moreover, CPCG constructs a stable causal skeleton and exhibits insensitivity to the order of data shuffling. Overall, CPCG is a powerful tool for extracting cancer prognostic biomarkers, offering interpretability, generalizability, and robustness. CPCG holds promise for facilitating targeted interventions in clinical treatment strategies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae721\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae721","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identifying cancer prognosis genes through causal learning.
Accurate identification of causal genes for cancer prognosis is critical for estimating disease progression and guiding treatment interventions. In this study, we propose CPCG (Cancer Prognosis's Causal Gene), a two-stage framework identifying gene sets causally associated with patient prognosis across diverse cancer types using transcriptomic data. Initially, an ensemble approach models gene expression's impact on survival with parametric and semiparametric hazard models. Subsequently, an iterative conditional independence test combined with graph pruning is utilized to infer the causal skeleton, thereby pinpointing prognosis-related genes. Experiments on transcriptomic data from 18 cancer types sourced from The Cancer Genome Atlas Project demonstrate CPCG's effectiveness in predicting prognosis under four evaluation metrics. Validations on 24 additional datasets covering 12 cancer types from the Gene Expression Omnibus and the Chinese Glioma Genome Atlas Project further demonstrate CPCG's robustness and generalizability. CPCG identifies a concise but reliable set of genes, obviating the need for gene combination enumeration for survival time estimation. These genes are also proved closely linked to crucial biological processes in cancer. Moreover, CPCG constructs a stable causal skeleton and exhibits insensitivity to the order of data shuffling. Overall, CPCG is a powerful tool for extracting cancer prognostic biomarkers, offering interpretability, generalizability, and robustness. CPCG holds promise for facilitating targeted interventions in clinical treatment strategies.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.