{"title":"升高的 SREBP1 通过靶向 SOX9 加速了胰腺癌的发生和生长。","authors":"Cancan Zhou, Zhengyuan Feng, Weikun Qian, Zeen Zhu, Ruiqi Cao, Qiqi Wang, Wunai Zhang, Rujuan Liu, Shuai Wu, Jie Hao, Zheng Wang, Qingyong Ma, Zheng Wu, Xuqi Li","doi":"10.1186/s13062-025-00595-1","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras<sup>G12D/+</sup>;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis. In vitro, either knockdown or pharmacological inhibition of SREBP1 suppressed tumor proliferation but SREBP1 overexpression promoted tumor proliferation. In LSL-Kras<sup>G12D/+</sup>;Trp53<sup>fl/+</sup>;Pdx1-Cre (KPC) mice, we confirmed the tumor-promoting role of SREBP1 in pancreatic cancer progression. Mechanistically, we revealed SOX9 as a downstream target of SREPB1. SREBP1 inhibition decreased SOX9 expression in both acinar cells and pancreatic cancer cells. Indeed, we identified SREBP1 binding sites in the SOX9 promoter region and reported that SOX9 is transcriptionally regulated by SREBP1. Taken together, our findings demonstrate that SREBP1/SOX9 inhibition suppresses pancreatic cancer initiation and growth, suggesting that SREBP1 could serve as a potential target for cancer screening and treatment.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"6"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731174/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elevated SREBP1 accelerates the initiation and growth of pancreatic cancer by targeting SOX9.\",\"authors\":\"Cancan Zhou, Zhengyuan Feng, Weikun Qian, Zeen Zhu, Ruiqi Cao, Qiqi Wang, Wunai Zhang, Rujuan Liu, Shuai Wu, Jie Hao, Zheng Wang, Qingyong Ma, Zheng Wu, Xuqi Li\",\"doi\":\"10.1186/s13062-025-00595-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras<sup>G12D/+</sup>;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis. In vitro, either knockdown or pharmacological inhibition of SREBP1 suppressed tumor proliferation but SREBP1 overexpression promoted tumor proliferation. In LSL-Kras<sup>G12D/+</sup>;Trp53<sup>fl/+</sup>;Pdx1-Cre (KPC) mice, we confirmed the tumor-promoting role of SREBP1 in pancreatic cancer progression. Mechanistically, we revealed SOX9 as a downstream target of SREPB1. SREBP1 inhibition decreased SOX9 expression in both acinar cells and pancreatic cancer cells. Indeed, we identified SREBP1 binding sites in the SOX9 promoter region and reported that SOX9 is transcriptionally regulated by SREBP1. Taken together, our findings demonstrate that SREBP1/SOX9 inhibition suppresses pancreatic cancer initiation and growth, suggesting that SREBP1 could serve as a potential target for cancer screening and treatment.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"6\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731174/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00595-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00595-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Elevated SREBP1 accelerates the initiation and growth of pancreatic cancer by targeting SOX9.
Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-KrasG12D/+;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis. In vitro, either knockdown or pharmacological inhibition of SREBP1 suppressed tumor proliferation but SREBP1 overexpression promoted tumor proliferation. In LSL-KrasG12D/+;Trp53fl/+;Pdx1-Cre (KPC) mice, we confirmed the tumor-promoting role of SREBP1 in pancreatic cancer progression. Mechanistically, we revealed SOX9 as a downstream target of SREPB1. SREBP1 inhibition decreased SOX9 expression in both acinar cells and pancreatic cancer cells. Indeed, we identified SREBP1 binding sites in the SOX9 promoter region and reported that SOX9 is transcriptionally regulated by SREBP1. Taken together, our findings demonstrate that SREBP1/SOX9 inhibition suppresses pancreatic cancer initiation and growth, suggesting that SREBP1 could serve as a potential target for cancer screening and treatment.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.