{"title":"Fractal Conditional Correlation Dimension Infers Complex Causal Networks.","authors":"Özge Canlı Usta, Erik M Bollt","doi":"10.3390/e26121030","DOIUrl":null,"url":null,"abstract":"<p><p>Determining causal inference has become popular in physical and engineering applications. While the problem has immense challenges, it provides a way to model the complex networks by observing the time series. In this paper, we present the optimal conditional correlation dimensional geometric information flow principle (oGeoC) that can reveal direct and indirect causal relations in a network through geometric interpretations. We introduce two algorithms that utilize the oGeoC principle to discover the direct links and then remove indirect links. The algorithms are evaluated using coupled logistic networks. The results indicate that when the number of observations is sufficient, the proposed algorithms are highly accurate in identifying direct causal links and have a low false positive rate.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727536/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121030","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Determining causal inference has become popular in physical and engineering applications. While the problem has immense challenges, it provides a way to model the complex networks by observing the time series. In this paper, we present the optimal conditional correlation dimensional geometric information flow principle (oGeoC) that can reveal direct and indirect causal relations in a network through geometric interpretations. We introduce two algorithms that utilize the oGeoC principle to discover the direct links and then remove indirect links. The algorithms are evaluated using coupled logistic networks. The results indicate that when the number of observations is sufficient, the proposed algorithms are highly accurate in identifying direct causal links and have a low false positive rate.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.