一种基于fceemd的多复杂度低维特征和有向无环图LSTSVM的故障诊断方法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-11-29 DOI:10.3390/e26121031
Rongrong Lu, Miao Xu, Chengjiang Zhou, Zhaodong Zhang, Kairong Tan, Yuhuan Sun, Yuran Wang, Min Mao
{"title":"一种基于fceemd的多复杂度低维特征和有向无环图LSTSVM的故障诊断方法。","authors":"Rongrong Lu, Miao Xu, Chengjiang Zhou, Zhaodong Zhang, Kairong Tan, Yuhuan Sun, Yuran Wang, Min Mao","doi":"10.3390/e26121031","DOIUrl":null,"url":null,"abstract":"<p><p>Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM. The Fast Complementary Ensemble Empirical Mode Decomposition (FCEEMD) method is applied to decompose vibration signals, effectively reducing background noise. Nonlinear complexity features are then extracted, including sample entropy (SE), permutation entropy (PE), dispersion entropy (DE), Gini coefficient, the square envelope Gini coefficient (SEGI), and the square envelope spectral Gini coefficient (SESGI), enhancing the capture of the signal complexity. In addition, 16 time-domain and 13 frequency-domain features are used to characterize the signal, forming a high-dimensional feature matrix. Robust unsupervised feature selection with local preservation (RULSP) is employed to identify low-dimensional sensitive features. Finally, a multi-classifier based on DAG LSTSVM is constructed using the directed acyclic graph (DAG) strategy, improving fault diagnosis precision. Experiments on both laboratory bearing faults and industrial check valve faults demonstrate nearly 100% diagnostic accuracy, highlighting the method's effectiveness and potential.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727493/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Fault Diagnosis Method Using FCEEMD-Based Multi-Complexity Low-Dimensional Features and Directed Acyclic Graph LSTSVM.\",\"authors\":\"Rongrong Lu, Miao Xu, Chengjiang Zhou, Zhaodong Zhang, Kairong Tan, Yuhuan Sun, Yuran Wang, Min Mao\",\"doi\":\"10.3390/e26121031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM. The Fast Complementary Ensemble Empirical Mode Decomposition (FCEEMD) method is applied to decompose vibration signals, effectively reducing background noise. Nonlinear complexity features are then extracted, including sample entropy (SE), permutation entropy (PE), dispersion entropy (DE), Gini coefficient, the square envelope Gini coefficient (SEGI), and the square envelope spectral Gini coefficient (SESGI), enhancing the capture of the signal complexity. In addition, 16 time-domain and 13 frequency-domain features are used to characterize the signal, forming a high-dimensional feature matrix. Robust unsupervised feature selection with local preservation (RULSP) is employed to identify low-dimensional sensitive features. Finally, a multi-classifier based on DAG LSTSVM is constructed using the directed acyclic graph (DAG) strategy, improving fault diagnosis precision. Experiments on both laboratory bearing faults and industrial check valve faults demonstrate nearly 100% diagnostic accuracy, highlighting the method's effectiveness and potential.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121031\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121031","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

滚动轴承作为旋转机械的关键部件,对设备的可靠性和运行效率有着重要的影响。因此,准确的故障诊断对于维持工业生产的安全和连续性至关重要。提出了一种基于FCEEMD多复杂度低维特征和有向无环图LSTSVM的故障诊断方法。采用快速互补综经验模态分解(FCEEMD)方法对振动信号进行分解,有效地降低了背景噪声。然后提取非线性复杂性特征,包括样本熵(SE)、排列熵(PE)、色散熵(DE)、基尼系数、平方包络基尼系数(SEGI)和平方包络谱基尼系数(SESGI),增强信号复杂性的捕获。另外,利用16个时域特征和13个频域特征对信号进行表征,形成一个高维特征矩阵。采用基于局部保存的鲁棒无监督特征选择(RULSP)来识别低维敏感特征。最后,利用有向无环图(DAG)策略构造了基于DAG LSTSVM的多分类器,提高了故障诊断精度。对实验室轴承故障和工业单向阀故障的实验表明,该方法的诊断准确率接近100%,突出了该方法的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Fault Diagnosis Method Using FCEEMD-Based Multi-Complexity Low-Dimensional Features and Directed Acyclic Graph LSTSVM.

Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM. The Fast Complementary Ensemble Empirical Mode Decomposition (FCEEMD) method is applied to decompose vibration signals, effectively reducing background noise. Nonlinear complexity features are then extracted, including sample entropy (SE), permutation entropy (PE), dispersion entropy (DE), Gini coefficient, the square envelope Gini coefficient (SEGI), and the square envelope spectral Gini coefficient (SESGI), enhancing the capture of the signal complexity. In addition, 16 time-domain and 13 frequency-domain features are used to characterize the signal, forming a high-dimensional feature matrix. Robust unsupervised feature selection with local preservation (RULSP) is employed to identify low-dimensional sensitive features. Finally, a multi-classifier based on DAG LSTSVM is constructed using the directed acyclic graph (DAG) strategy, improving fault diagnosis precision. Experiments on both laboratory bearing faults and industrial check valve faults demonstrate nearly 100% diagnostic accuracy, highlighting the method's effectiveness and potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1